Skip to main content

Advertisement

Log in

Nanoformulated Antiretrovirals for Penetration of the Central Nervous System: State of the Art

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The central nervous system is a very challenging HIV-1 sanctuary. But, despite complete suppression of plasmatic viral replication with current antiretroviral therapy, signs of HIV-1 replication can still be found in the cerebrospinal fluid in some patients. The main limitation to achieving HIV-1 eradication from the brain is related to the suboptimal concentrations of antiretrovirals within this site, due to their low permeation across the blood–brain barrier. In recent years, a number of reliable nanotechnological strategies have been developed with the aim of enhancing antiretroviral drug penetration across the blood–brain barrier. The aim of this review is to provide an overview of the different nanoformulated antiretrovirals, used in both clinical and preclinical studies, that are designed to improve their delivery into the brain by active or passive permeation mechanisms through the barrier. Different nanotechnological approaches have proven successful for optimizing antiretrovirals delivery to the central nervous system, with a likely benefit for HIV-associated neurocognitive disorders and a more debated contribution to the complete eradication of the HIV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banks WA (2009) Characteristics of compounds that cross the blood–brain barrier. BMC Neurol 9(1):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Best BM, Koopmans PP, Letendre SL et al (2011) Efavirenz concentrations in CSF exceed IC50 for wild-type HIV. J Antimicrob Chemother 66(2):354–357

    Article  CAS  PubMed  Google Scholar 

  • Best BM, Letendre SL, Koopmans PP et al (2012) Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J Acquir Immune Defic Syndr 59:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonora S, Nicastri E, Calcagno A et al (2009) Ultrasensitive assessment of residual HIV viraemia in HAART-treated patients with persistently undetectable plasma HIV-RNA: a cross-sectional evaluation. J Med Virol 81(3):400–405

    Article  CAS  PubMed  Google Scholar 

  • Bouchat S, Gatot JS, Kabeya K et al (2012) Histone methyltranferase inhibitors induce HIV-1 recovery in resting GD4(+) T cells from HIV-1-infected HAART-treated patients. AIDS 26:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Bowman NM, Joseph SB, Kincer LP et al. (2016) HIV compartmentalization in the CNS is associated with neurocognitive impairment. Abs 401, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2016, Boston, MA, USA

  • Busquets MA, Espargaró A, Sabaté R, Estelrich J (2015) Magnetic nanoparticles cross the Blood–brain Barrier: when physics rises to a challenge. Nanomaterials 5:2231–2248

    Article  CAS  Google Scholar 

  • Buzón MJ, Massanella M, Llibre JM et al (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16:460–466

    Article  PubMed  CAS  Google Scholar 

  • Canestri A, Ghosn J, Wirden M et al (2006) Foscarnet salvage therapy for patients with late-stage HIV disease and multiple drug resistance. Antivir Ther 11(5):561–566

    CAS  PubMed  Google Scholar 

  • Canestri A, Lescure FX, Jaureguiberry S et al (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 50:773–778

    Article  PubMed  Google Scholar 

  • Chen H, Qin Y, Zhang Q et al (2011) Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci 44:164–173

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Wen S, Shang SA, Cui Y, Luo B, Teng GJ (2014) Magnetic resonance and near-infrared imaging using a novel dual-modality nano-probe for dendritic cell tracking in vivo. Cytotherapy 16:699–710

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai Q, Morshed RA et al (2014) Blood–brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 29(10):5137–5150

    Google Scholar 

  • Cherukula K, Lekshmi KM, Uthaman S et al (2016) Multifunctional inorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials 6:76

    Article  CAS  Google Scholar 

  • Chi X, Huang D, Zhao Z et al (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33:189–206

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Lee JK, Jeong J et al (2013) Toxicity evaluation of inorganic nanoparticles: considerations and challenges. Mol Cell Toxicol 9:205–210

    Article  CAS  Google Scholar 

  • Churchill MJ, Wesseling ML, Cowley D et al (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66:253–258

    Article  PubMed  Google Scholar 

  • Cooper DR, Bekah D, Nadeau JL (2014) Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corot C, Warlin D (2013) Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective. WIREs Nanomed Nanobiotechnol 5:411–422

    CAS  Google Scholar 

  • Corsi F, Fiandra L, De Palma C et al (2011) HER2 Expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 5:6383–6393

    Article  CAS  PubMed  Google Scholar 

  • Corsi F, Sorrentino L, Mazzucchelli M et al (2016) Antiretroviral therapy through barriers: a prominent role for nanotechnology in HIV-1 eradication from sanctuaries. J Pharm Pharmacol 4:328–339

    Google Scholar 

  • Croteau D, Rossi S, Best B et al (2013) Darunavir is predominantly unbound to protein in cerebrospinal fluid and concentrations exceed the wild-type HIV-1 median 90% inhibitory concentration. J Antimicrob Chemother 68:684–689

    Article  CAS  PubMed  Google Scholar 

  • Cusini A, Vernazza P, Yerly S et al (2013) Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr 62:28–35

    Article  CAS  PubMed  Google Scholar 

  • Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17:176–183

    Article  PubMed  Google Scholar 

  • Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW (2014) Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 28:2251–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darcis G, Koula A, Bouchet S et al (2015) An in-depth comparisn of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1 + JQ1 and and ingenol-B + JQ1 to potently reactivate viral gene expression. PLoS Pathog 11, e1005063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dash PK, Gendelman HE, Roy U et al (2012) Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS 26:2135–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Oliveira MF, Chaillon A, Letendre SR, et al. (2016) Compartmentalized HIV DNA Populations Persist in CSF Despite Suppressive ART. Abs 143, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2016, Boston, MA, USA

  • Delory T, Papot E, Rioux C et al (2015) Foscarnet, zidovudine and dolutegravir combination efficacy and tolerability for late stage HIV salvage therapy: a case-series experience. J Med Virol. doi:10.1002/jmv.24442

    Google Scholar 

  • Denayer T, Stöhr T, Van Roy M (2014) Animal models in translational medicine: validation and prediction. New Horiz Transl Med 2:5–11

    Article  Google Scholar 

  • Destache CJ, Belgum T, Goede M et al (2010) Antiretroviral release from poly(dl-lactide-co-glycolide) nanoparticles in mice. J Antimicrob Chemother 65:2183–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Yacovo MS, Molto’ J, Ferrer E et al (2015) Antiviral activity and CSF concentrations of 600/100 mg of darunavir/ritonavir once daily in HIV-1 patients with plasma viral suppression. J Antimicrob Chemother 70:1513–1516

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Sagar V, Agudelo M et al (2014) Enhanced blood–brain barrier transmigration using a novel transferring embedded fluorescent magneto-liposome nanoformulation. Nanotechnology 25:055101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dou H, Morehead J, Destache CJ et al (2007) Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocytederived macrophages. Virology 358:148–158

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Grotepas CB, McMillan JM et al (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusserre N, Lessard C, Paquette N et al (1995) Encapsulation of foscarnet in liposomes modifies drug intracellular accumulation, in vitro anti-HIV-1 activity, tissue distribution and pharmacokinetics. AIDS 9:833–841

    Article  CAS  PubMed  Google Scholar 

  • Eck W, Nicholson AI, Zentgraf H, Semmler W, Bartling S (2010) Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett 10:2318–2322

    Article  CAS  PubMed  Google Scholar 

  • Edén A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslén M (2007) Immune activation of the central nervous system is still present after > 4 years of effective highly active antiretroviral therapy. J Infect Dis 196:1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Edén A, Fuchs D, Hagberg L et al (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202:1819–1825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehlerding EB, Chen F, Cai W (2016) Biodegradable and renal clearable inorganic nanoparticles. Adv Sci 3:1500223

    Article  CAS  Google Scholar 

  • Ene L, Duiculescu D, Ruta SM (2011) How much do antiretroviral drugs penetrate into the central nervous system? J Med Life 4:432–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evering T, Bernard LS, Abolade J, Mohri H, Markowitz M (2016) Relative frequency of drug Resistance mutations on individual HIV-1 genomes in HAND. Abs 406, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2016, Boston, MA, USA

  • Fiandra L, Colombo M, Mazzucchelli S et al (2015) Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine 11:1387–1397

    CAS  PubMed  Google Scholar 

  • Fletcher CV, Staskus K, Wietgrefe SW et al (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci 111(6):2307–2312

  • Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV (2014) Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine 10:177–185

    CAS  PubMed  Google Scholar 

  • Gill AJ, Kolson DL (2013) Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy. Crit Rev Immunol 33:307–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbo OL, Sjaastad K, Radomski MW et al (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorry P, Onc C, Thorpe J et al (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated demetntia. Curr HIV Res 1:463–473

    Article  CAS  PubMed  Google Scholar 

  • Grant I, Franklin DR Jr, Deutsch R et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82:2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray LR, Turville SG, Hitchen TL et al (2014) HIV-1 entry and trans-infection of astrocytes involves CD81 vesicles. Plos One 9, e90620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grinsztejn B, Hosseinipour MC, Ribaudo HJ et al (2014) Effects of early versus delayed initiation of antiretroviral treatment on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled trial. Lancet Infect Dis 14:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Gao X, Su L et al (2011) Aptamer-functionalised PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  CAS  PubMed  Google Scholar 

  • Hakre S, Chavez L, Shirakawa K, Verdin E (2011) Epigenetic regulation of HIV latency. Curr Opin HIV AIDS 6:19–24

    Article  PubMed  Google Scholar 

  • Han L, Ren Y, Long L et al (2012) Inhibition of C6 glioma in vivo by combination chemotherapy of implantation of polymer wafer and intracarotid perfusion of transferrin-decorated nanoparticles. Oncol Rep 27:121–128

    CAS  PubMed  Google Scholar 

  • Harezlak J, Buchthal S, Taylor M, Navia B (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmuth J, Spudich S, Sailasuta N et al (2015) Acute HIV plasma/CSF HIV RNA ratios are variable and greater than in chronic HIV. Abs 438, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2015, Seattle, WA, USA

  • Hemmelman M, Knoth C, Schmitt U et al (2011) HPMA based amphiphilic copolymers mediate central nervous effects of domperidone. Macromol Rapid Commun 32:712–717

    Article  CAS  Google Scholar 

  • Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

    Article  CAS  PubMed  Google Scholar 

  • https://clinicaltrials.gov/ct2/show/NCT00672932. Accessed 25 Sept 2017

  • https://clinicaltrials.gov/ct2/show/NCT01600170. Accessed 25 Sept 2017

  • https://clinicaltrials.gov/ct2/show/NCT01978743. Accessed 25 Sept 2017

  • https://clinicaltrials.gov/ct2/show/NCT02285374. Accessed 25 Sept 2017

  • https://clinicaltrials.gov/ct2/show/NCT02750059. Accessed 25 Sept 2017

  • Jafari S, Dizaj SM, Adibkia K (2015) Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. BioImpacts 5:103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayant RD, Atluri VS, Agudelo M, Sagar V, Kaushik A, Nair M (2015) Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine 10:1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    Article  CAS  PubMed  Google Scholar 

  • Jessen Krut J, Mellberg T, Price RW et al (2014) Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One 9, e88591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R (2015) HIV-1 target cells in the CNS. J Neurovirol 21:276–289

    Article  CAS  PubMed  Google Scholar 

  • Joseph SB, Kincer LP, Bowman NM et al. (2016) Persistent HIV-1 in the CNS During Therapy: Evidence of a Viral Reservoir in the CNS. Abs 406, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2016, Boston, MA, USA

  • Kandel CS, Walmsley SL (2015) Dolutegravir – a review of the pharmacology, efficacy, and safety in the treatment of HIV. Drug Des Devel Ther 9:3547–3555

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanmogne G, Singh S, Roy U et al (2012) Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 7:2373–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S et al (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109

    Article  CAS  PubMed  Google Scholar 

  • Kim RB, Fromm MF, Wandel C et al (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimata JT, Rice AP, Wang J (2016) Challenges and strategies for the eradication of the HIV reservoir. Curr Opin Immunol 42:65–70

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (2011) Cancer hyperthermia using magnetic nanoparticles. Biotechnol J 6:1342–1347

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Hämmerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005) Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111:194–213

    Article  PubMed  CAS  Google Scholar 

  • Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Chen HH (2006) Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylatesulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm 327:160–169

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Chen HH (2009) Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int J Pharm 365:206–213

    CAS  PubMed  Google Scholar 

  • Kuo YC, Lee CL (2012) Methylmethacrylate–sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood–brain barrier. Colloids Surf B: Biointerfaces 90:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Fadda AM, Sinico C (2013) Liposomes for brain delivery. Expert Opin Drug Deliv 10:1003–1022

    Article  CAS  PubMed  Google Scholar 

  • Lamers SL, Rose R, Nolan DJ, et al. (2016) HIV DNA Identified in Most Tissues of a Plasma-Negative HIV Autopsy Cohort. Abs 345, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2016, Boston, MA, USA

  • Letendre S, Best B, Breidinger S et al. (2009) Raltegravir concentrations in CSF exceed the median inhibitoryconcentration. 49th ICAAC (Interscience Conference on Antimicrobial Agents and Chemotherapy). September 12–15, 2009. San Francisco. Abstract A-1311

  • Letendre SL, Mills AM, Tashima KT et al (2014) ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects. Clin Infect Dis 59:1032–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Anderson C, O’Major E, Nath A (2106) HIV Infection in Astrocytes Via a CD4-Independent, CXCR4-Dependent Mechanism. Abs 393, Conference on Retroviruses and Opportunistic Infections, February 22–25, Boston, MA, USA

  • Liu D, Lin B, Shao W et al (2014) In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood–brain barrier. ACS Appl Mater Interfaces 6:2131–2136

    Article  CAS  PubMed  Google Scholar 

  • Lu CT, Zhao YZ, Wonfg HL, Cai J et al (2014) Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 9:2241–2257

    Article  PubMed  PubMed Central  Google Scholar 

  • Luzuriaga K, Gay H, Ziemniak C et al (2015) Viremic relapse after HIV-1 remission in a perinatally infected child. N Engl J Med 372:786–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan SD, Roy I, Xu G et al (2010) Enhancing the delivery of antiretroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res 8:396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath K, Venkateshwarlu V (2006) Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 14:632–645

    Article  CAS  PubMed  Google Scholar 

  • Massanella M, Ouchi D, Marfil S et al (2014) Different plasma markers of inflammation are influenced by immune recovery and cART composition or intensification in treated HIV infected individuals. PLoS One 9, e114142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McArthur JC, Haughey N, Gartner S et al (2003) Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol 9:205–221

    Article  CAS  PubMed  Google Scholar 

  • Miller LK, Kobayashi Y, Chen CC, Russnak TA, Ron Y, Dougherty JP (2013) Proteasome inhibitors act as bifunctional antagonists of human immunodeficiency virus type 1 latency and replication. Retrovirology 10:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills AM, Antinori A, Clotet B et al (2013) Neurological and psychiatric tolerability of rilpivirine (TMC278) vs. efavirenz in treatment-naïve, HIV-1-infected patients at 48 weeks. HIV Med 14:391–400

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mahor S, Rawat A et al (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14:45–53

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Stayton P (2014) Organic nanoparticles for drug delivery and imaging. MRS Bull 39:219–223

    Article  CAS  Google Scholar 

  • Molina JM, Clotet B, van Lunzen J et al (2015) Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV 2(4):e127–e136

    Article  PubMed  Google Scholar 

  • Nowacek A, Gendelman HE (2009) NanoART, neuroAIDS and CNS drug delivery. Nanomedicine (London) 4:557–574

    Article  CAS  Google Scholar 

  • Paciotti GF, Meyer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    Article  CAS  PubMed  Google Scholar 

  • Perez Valero I, Letendre S, Ellis R et al (2012) Prevalence and risk factors for HIV CSF viral escape: results from the CHARTER and HNRP cohorts. J Int AIDS Soc 15:18189

    Article  Google Scholar 

  • Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petito C, Chen H, Mastri A, Torres-Munoz J, Roberts B, Wood C (1996) HIV infecion of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroids plexus may be a reservoir of productive infection. J Neurovirol 5:670–677

    Article  Google Scholar 

  • Petri B, Bootz A, Khalansky A et al (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117:51–58

    Article  CAS  PubMed  Google Scholar 

  • Pinnetti C, Lorenzini P, Forbici F, et al. (2014) CSF viral escape in patients without neurological disorders: prevalence and associated factors. Abs 443 Conference on Retroviruses and Opportunistic Infections, March 3–6, Boston, MA, USA

  • Policicchio BB, Pandrea I, Apetrei (2016) Animal models for HIV cure research. Front Immunol 7:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price RW, Parham R, Kroll JL et al (2008) Enfuvirtide cerebrospinal fluid (CSF) pharmacokinetics and potential use in defining CSF HIV-1 origin. Antivir Ther 13(3):369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao R, Jia Q, Hüwel S et al (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood–brain barrier. ACS Nano 6:3304–3310

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhang Q, Chen H et al (2012) Comparison of four different peptides to enhance accumulation of liposomes into the brain. J Drug Target 20:235–245

    Article  CAS  PubMed  Google Scholar 

  • Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29:4429–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen TA, Schmeltz Sogaard O, Brinkmann C et al (2013) Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother 9:993–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawson T, Muir D, Mackie NE, Winston A (2012) Factors associated with cerebrospinal fluid HIV RNA in HIV infected subjects undergoing lumbar puncture examination in a clinical setting. J Infect 65:239–245

    Article  PubMed  Google Scholar 

  • Re F, Cambianica I, Zona C et al (2011) Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood–brain barrier model. Nanomedicine 7:551–559

    CAS  PubMed  Google Scholar 

  • Robillard KR, Chan GN, Zhang G, la Porte C, Cameron W, Bendayan R (2014) Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother 58:1713–1722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sáez-Cirión A, Bacchus C, Hocqueloux L et al (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 9, e1003211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagar VV, Pilakka-Kanthikeel S, Pottathil R, Saxena SK, Nair M (2014) Towards nanomedicines for neuroAIDS. Rev Med Virol 24:103–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiyed ZM, Gandhi NH, Nair MP (2010) Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine 5:157–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmati L, Parisi SG, Montano M et al (2012) Nevirapine use, prolonged antiretroviral therapy and high CD4 nadir values are strongly correlated with undetectable HIV-DNA and -RNA levels and CD4 cell gain. J Antimicrob Chemother 67:2932–2938

    Article  CAS  PubMed  Google Scholar 

  • Saucier-Sawyer JK, Deng Y, Seo Y-E et al (2015) Systemic Delivery of blood–brain barrier targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target 23:736–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 36:179–194

    Article  CAS  PubMed  Google Scholar 

  • Schnell G, Joseph S, Spudich S, Swanstrom R (2011) HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 7, e1002286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake TH, Gorantla S, Makarov E, Lu Y, Warren G, Vinogradov SV (2015) Nanogel-conjugated reverse transcriptase inhibitors and their combinations as novel antiviral agents with increased efficacy against HIV-1 Infection. Mol Pharm 12:4226–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L, Yang HC, Rabi SA et al (2011) Influence of host gene trasncription level and orientation on HIV-1 latency in a primary cell model. J Virol 85:5384–53693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Singh P, Vaira D, Amand M, Rahmouni S, Moutschen M (2014) Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice. Immunology 142:562–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh I, Swami R, Pooja D et al (2016) Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J Drug Target 24:212–223

    Article  CAS  PubMed  Google Scholar 

  • Solas C, Lafeuillade A, Halfon P, Chadapaud S, Hittinger G, Lacarelle B (2003) Discrepancies between protease inhibitor concentrations and viral load in reservoirs and sanctuary sites in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 47:238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spivak AM, Bosque A, Balch AH, Smyth D, Martins L, Planelles V (2015) Ex vivo bioactivity and latency reversal by ingenol dibenzoate and panobinostat in resting CD4+ T cells from aviremic patients. Antimicrob Agents Chemother 59:5984–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefic K, Chaillon A, Bouvin-Pley M et al. (2016) CNS compartmentalization of HIV-1 and sensitivity to neutralizing antibodies. Abs 400, Conference on Retroviruses and Opportunistic Infections, February 22–25, 2016, Boston, MA, USA

  • Steiniger SC, Kreuter J, Khalansky AS et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Article  CAS  PubMed  Google Scholar 

  • Sturdevant CB, Joseph SB, Schnell G et al (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 7, e1002286

    Google Scholar 

  • Sun D, Xue A, Zhang B, Lou H, Shi H, Zhang X (2015) Polysorbate 80-coated PLGA nanoparticles improve the permeability of acetylpuerarin and enhance its brain-protective effects in rats. J Pharm Pharmacol 67:1650–1662

    Article  CAS  PubMed  Google Scholar 

  • Svicher V, Ceccherini-Silberstein F, Antinori A, Aquaro S, Perno CF (2014) Understanding HIV compartments and reservoirs. Curr HIV/AIDS Rep 11:186–194

    Article  PubMed  Google Scholar 

  • Temesgen Z, Siraj DS (2008) Raltegravir: first in class HIV integrase inhibitor. Ther Clin Risk Manag 4:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen LB, Thomsen MS, Moos T (2015) Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv 6:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Tosi G, Costantino L, Rivasi F et al (2007) Targeting the central nervous system: In vivo experiments with peptidederivatized nanoparticles loaded with loperamide and rhodamine-123. J Control Release 122:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tozzi V, Balestra P, Serraino D et al (2005) Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retrovir 21:706–713

    Article  PubMed  Google Scholar 

  • Tozzi V, Balestra P, Bellagamba R et al (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment. J Acquir Immune Defic Syndr 45:174–182

    Article  PubMed  Google Scholar 

  • Valcour V, Chalemchai T, Sailasuta N et al (2012) Central nervous system viral invasion and inflammation during acute HIV Infection. J Infect Dis 206:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilella A, Ruozi B, Belletti D et al (2015) Endocytosis of nanomedicines: the case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics 7:74–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JX, Sun X, Zhang ZR (2002) Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 54:285–290

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao Q, Han N et al (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–327

    CAS  PubMed  Google Scholar 

  • Watkins CC, Treisman GJ (2015) Cognitive impairment in patients with AIDS – prevalence and severity. HIV AIDS (Auckl) 7:35–47

    Google Scholar 

  • Whitney JB, Lim SY, Osuna CE at al (2015) Treatment with a TLR7 agonist induces transient viremia in SIV-infected ART-suppressed monkeys. Abs 108 Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA

  • Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B (2008) Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Briley K, Tao X (2016) Nanoparticle-based imaging of inflammatory bowel disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:300–315

    Article  PubMed  Google Scholar 

  • Xu G, Yong KT, Roy I et al (2008) Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood–brain barrier. Bioconjug Chem 19:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Mahajan S, Roy I et al (2013) Theranostic quantum dots for crossing blood–brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol 4:140

    PubMed  PubMed Central  Google Scholar 

  • Yilmaz A, Price R, Spudich S, Fuchs D, Hagberg L, Gisslen M (2008) Persistent intrathecal immune activation in HIV-1–infected individuals on antiretroviral therapy. J Acquir Immune Defic Syndr 47:168–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz A, Watson V, Else L, Gisslèn M (2009) Cerebrospinal fluid maraviroc concentrations in HIV-1 infected patients. AIDS 23(18):2537–2540

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Watson V, Dickinson L, Back D (2012) Efavirenz pharmacokinetics in cerebrospinal fluid and plasma over a 24-hour dosing interval. Antimicrob Agents Chemother 56(9):4583–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying X, Wen He, Lu WL et al (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 141:183–192

  • Zara GP, Cavalli R, Bargoni A, Fundaro A, Vighetto D, Gasco MR (2002) Intravenous administration to rabbits of non-stealth and stealth doxorubicin loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 10:327–335

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Ouyang YB, Liu LG, Chen DX (2015) Blood–brain barrier and neuro-AIDS. Eur Rev Med Pharmacol Sci 19:4927–4939

    PubMed  Google Scholar 

  • Zhao M, Liang C, Li A et al (2010) Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts. Anticancer Res 30:2217–2224

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Corsi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiandra, L., Capetti, A., Sorrentino, L. et al. Nanoformulated Antiretrovirals for Penetration of the Central Nervous System: State of the Art. J Neuroimmune Pharmacol 12, 17–30 (2017). https://doi.org/10.1007/s11481-016-9716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9716-3

Keywords

Navigation