Skip to main content
Log in

Toxicity evaluation of inorganic nanoparticles: considerations and challenges

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Toxicity evaluation of inorganic nanoparticles in cell lines and in whole animals has been extensively explored in recent years. However, conflicting results have been reported regarding size-dependent toxicity and biokinetics in vitro and in vivo, and thus, basic questions regarding whether nanoparticles, ranged from 1 to 100 nm in size, are comparatively more toxic than larger-sized particles remain unanswered. This may be closely associated with changes in physicochemical properties of nanoparticles in biological fluids. Understanding in vivo physiological barriers, biological fates, and absorption mechanism of nanoparticles upon exposure routes will be useful to predict their toxicity potential. This review will highlight the critical points to be considered in order to evaluate the toxicity of inorganic nanoparticles, and discuss the issues and challenges emerging in the field of nanotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S. J. & Choy, J. H. Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine (Lond) 6: 803–814 (2011).

    Article  CAS  Google Scholar 

  2. Xia, T., Li, N. & Nel, A. E. Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150 (2009).

    Article  PubMed  Google Scholar 

  3. Choi, S. J., Oh, J. M. & Choy, J. H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103:463–471 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Fernandez, D., Garcia-Gomez, C. & Babin, M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Sci Total Environ 452–453:262–274 (2013).

    Article  PubMed  Google Scholar 

  5. Cho, W. S. et al. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Wang, J. et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Khlebtsov, N. & Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Almeida, J. P., Chen, A. L., Foster, A. & Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 6:815–835 (2011).

    Article  CAS  Google Scholar 

  9. Podila, R. & Brown, J. M. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27:50–55 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Lai, D. Y. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward. WIRES Nanomed Nanobi 4:1–15 (2012).

    Article  CAS  Google Scholar 

  11. Klien, K. & Godnic-Cvar, J. Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol 63:133–145 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Teeguarden, J. G. et al. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Campagnolo, L. et al. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials. Curr Med Chem 19:4488–4494 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Oberdorster, G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. P Natl Acad Sci USA 105:14265–14270 (2008).

    Article  CAS  Google Scholar 

  16. Sasidharan, N. P., Chandran, P. & Sudheer Khan, S. Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics. Colloid Surface B 102:195–201 (2013).

    Article  CAS  Google Scholar 

  17. Lousinian, S., Missopolinou, D. & Panayiotou, C. Fibrinogen adsorption on zinc oxide nanoparticles: a Micro-Differential Scanning Calorimetry analysis. J Colloid Interf Sci 395:294–299 (2013).

    Article  CAS  Google Scholar 

  18. Deng, Z. J. et al. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20: 455101–455109 (2009).

    Article  PubMed  Google Scholar 

  19. Sharma, V. K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1485–1495 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Albanese, A., Tang, P. S. & Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann Rev Biomed Eng 14:1–16 (2012).

    Article  CAS  Google Scholar 

  21. Kendall, M. & Holgate, S. Health impact and toxicological effects of nanomaterials in the lung. Respirology 17:743–758 (2012).

    Article  PubMed  Google Scholar 

  22. Waalewijn-Kool, P. L., Ortiz, M. D., Lofts, S. & van Gestel, C. A. The effect of pH on the toxicity of ZnO nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem DOI: 10.1002/etc.2302 (2013).

    Google Scholar 

  23. Misra, S. K. et al. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. Li, M., Lin, D. & Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Mudunkotuwa, I. A., Rupasinghe, T., Wu, C. M. & Grassian, V. H. Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Dobias, J. & Bernier-Latmani, R. Silver Release from Silver Nanoparticles in Natural Waters. Environ Sci Technol 47:4140–4146 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Loeschner, K. et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. Gilbert, B. et al. The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS nano 6:4921–4930 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Larner, F. et al. Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ Sci Technol 46:12137–12145 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Baek, M. et al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomed 7:3081–3097 (2012).

    Google Scholar 

  31. Diedrich, T. et al. The dissolution rates of SiO2 nanoparticles as a function of particle size. Environ Sci Technol 46:4909–4915 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Shahbazi, M. A. & Santos, H. A. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 14:28–56 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. des Rieux, A. et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27 (2006).

    Article  PubMed  Google Scholar 

  34. Park, K. et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 34:153–158 (2011).

    Article  PubMed  CAS  Google Scholar 

  35. Owens, D. E., 3rd & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3:703–717 (2008).

    Article  CAS  Google Scholar 

  37. Choi, H. S. et al. Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Donaldson, K. & Poland, C. A. Inhaled nanoparticles and lung cancer — what we can learn from conventional particle toxicology. Swiss Med Wkly 142:w13547 (2012).

    PubMed  Google Scholar 

  39. Klein, C. L. et al. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol 86:1137–1151 (2012).

    Article  PubMed  CAS  Google Scholar 

  40. Castranova, V. Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med 53:S14–17 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Crosera, M. et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occ Env Hea 82:1043–1055 (2009).

    Article  CAS  Google Scholar 

  42. Gulson, B. et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118:140–149 (2010).

    Article  PubMed  CAS  Google Scholar 

  43. Hirai, T. et al. Dermal absorption of amorphous nanosilica particles after topical exposure for three days. Pharmazie 67:742–743 (2012).

    PubMed  CAS  Google Scholar 

  44. Ohlson, M., Sorensson, J. & Haraldsson, B. A gelmembrane model of glomerular charge and size selectivity in series. Am J Physiol-Renal 280:F396–405 (2001).

    CAS  Google Scholar 

  45. Xu, Z. P., Zeng, Q. H., Lu, G. Q. & Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040 (2006).

    Article  CAS  Google Scholar 

  46. Oh, J. M., Choi, S. J., Kim, S. T. & Choy, J. H. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrinmediated endocytosis. Bioconjug Chem 17:1411–1417 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu Rev Biochem 78:857–902 (2009).

    Article  PubMed  CAS  Google Scholar 

  48. He, C., Yin, L., Tang, C. & Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 33:8569–8578 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. van der Lubben, I. M., Verhoef, J. C., Borchard, G. & Junginger, H. E. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207 (2001).

    Article  PubMed  Google Scholar 

  50. Prego, C., Torres, D. & Alonso, M. J. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Del 2:843–854 (2005).

    Article  CAS  Google Scholar 

  51. Ishizawa, T., Hayashi, M. & Awazu, S. Paracellular and transcellular permeabilities of fosfomycin across small intestinal membrane of rat and rabbit by voltageclamp method. J Pharmacobiody 14:583–589 (1991).

    Article  CAS  Google Scholar 

  52. Li, C. H. et al. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756 (2012).

    Article  PubMed  CAS  Google Scholar 

  53. Jenkins, J. T. et al. Excretion and toxicity of gold-iron nanoparticles. Nanomedicine 9:356–365 (2013).

    Article  PubMed  CAS  Google Scholar 

  54. Paek, H. J. et al. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale DOI: 10.1039/C3NR02140H (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Jin Choi or Jin-Ho Choy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SJ., Lee, J.K., Jeong, J. et al. Toxicity evaluation of inorganic nanoparticles: considerations and challenges. Mol. Cell. Toxicol. 9, 205–210 (2013). https://doi.org/10.1007/s13273-013-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-013-0026-z

Keywords

Navigation