Skip to main content
Log in

β-arrestin 2 mediates the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Recent evidence has suggested that microglial activation plays an important role in the pathogenesis of depression. Activated microglia can secrete various pro-inflammatory cytokines, which may contribute to the development and maintenance of depression. Thus, inhibition of microglial activation may have a therapeutic benefit in the treatment of depression. In the present study, we found that fluoxetine significantly inhibited lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α), interleukin- 6 (IL-6) and nitric oxide (NO) and reduced the phosphorylation of transforming growth factor-beta-activated kinase 1 (TAK1) and nuclear factor-kappa B (NF-κB) p65 nuclear translocation in microglia. We further found that fluoxetine increased the expression of β-arrestin 2 and enhanced the association of β-arrestin 2 with TAK1-binding protein 1 (TAB1) and disrupted TAK1-TAB1 interaction. Moreover, β-arrestin 2 knock-down abolished the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells. Collectively, our findings suggest that β-arrestin 2 is necessary for the anti-inflammatory effects of fluoxetine and offers novel drug targets in the convergent fluoxetine/β-arrestin 2 and inflammatory pathways for treating microglial inflammatory neuropathologies like depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T, Feldman RD, Ferguson SS, Kelvin DJ (2000) Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 1:227–233

    Article  CAS  PubMed  Google Scholar 

  • Barron KD (1995) The microglial cell. A historical review. J Neurol Sci 134(Suppl):57–68

    Article  PubMed  Google Scholar 

  • Branco-de-Almeida LS, Franco GC, Castro ML, Dos Santos JG, Anbinder AL, Cortelli SC, Kajiya M, Kawai T, Rosalen PL (2012) Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis. J Periodontol 83:664–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DelMastro K, Hellem T, Kim N, Kondo D, Sung YH, Renshaw PF (2011) Incidence of major depressive episode correlates with elevation of substate region of residence. J Affect Disord 129:376–379

    Article  PubMed  Google Scholar 

  • Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA (2007) Beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol 44:3092–3099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM, Kalin NH, Ratti E, Nemeroff CB, Miller AH (2007) Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry 62:1324–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng X, Wu CY, Burton FH, Loh HH, Wei LN (2014) beta-arrestin protects neurons by mediating endogenous opioid arrest of inflammatory microglia. Cell Death Differ 21:397–406

    Article  CAS  PubMed  Google Scholar 

  • Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD (2002) Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A 99:7478–7483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14:303–317

    Article  CAS  PubMed  Google Scholar 

  • Garrison GD, Levin GM (2000) Factors affecting prescribing of the newer antidepressants. Ann Pharmacother 34

  • Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13:717–728

    Article  CAS  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwang IK, JH Choi, SM Nam, Park OK, Yoo DY, Kim W, Yi SS, Won MH, Seong JK, Yoon YS (2014) Activation of microglia and induction of pro-inflammatory cytokines in the hippocampus of type 2 diabetic rats. Neurol Res 1743132814Y0000000330

  • Kaster MP, Gadotti VM, Calixto JB, Santos AR, Rodrigues AL (2012) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62:419–426

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  CAS  PubMed  Google Scholar 

  • Kizaki T, Izawa T, Sakurai T, Haga S, Taniguchi N, Tajiri H, Watanabe K, Day NK, Toba K, Ohno H (2008) Beta2-adrenergic receptor regulates Toll-like receptor-4-induced nuclear factor-kappaB activation through beta-arrestin 2. Immunology 12:348–356

    Article  Google Scholar 

  • Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105:751–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2013) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. doi:10.1038/mp.2013.155

    PubMed  Google Scholar 

  • Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology 61:592–599

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    CAS  PubMed  Google Scholar 

  • Madeeh Hashmi A, Awais Aftab M, Mazhar N, Umair M, Butt Z (2013) The fiery landscape of depression: a review of the inflammatory hypothesis. Pak J Med Sci 29:877–884

    PubMed Central  PubMed  Google Scholar 

  • Montgomery SA (1998) Efficacy and safety of the selective serotonin reuptake inhibitors in treating depression in elderly patients. Int Clin Psychopharmacol 13(Suppl 5):S49–S54

    Article  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Pace TW, Miller AH (2009) Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci 1179:86–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pace TW, Hu F, Miller AH (2007) Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 21:9–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pruett SB, Fan R (2009) Ethanol inhibits LPS-induced signaling and modulates cytokine production in peritoneal macrophages in vivo in a model for binge drinking. BMC Immunol 10:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Qian L, Wu HM, Chen SH, Zhang D, Ali SF, Peterson L, Wilson B, Lu RB, Hong JS, Flood PM (2011) beta2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J Immunol 186:4443–4454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  • Shu Z, Yang B, Zhao H, Xu B, Jiao W, Wang Q, Wang Z, Kuang H (2014) Tangeretin exerts anti-neuroinflammatory effects via NF-kappaB modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol 19:275–282

    Article  CAS  PubMed  Google Scholar 

  • Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B (2008) Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 42:151–157

    Article  PubMed  Google Scholar 

  • Sun Y, Cheng Z, Ma L, Pei G (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277:49212–49219

    Article  CAS  PubMed  Google Scholar 

  • Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Day TA, Walker FR (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24:1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, Lefkowitz RJ (2003) Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest 112:566–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57:411–441

    Article  CAS  PubMed  Google Scholar 

  • Wu CW, Chen YC, Yu L, Chen HI, Jen CJ, Huang AM, Tsai HJ, Chang YT, Kuo YM (2007) Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem 103:2471–2481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the Key Program of Basic Research of Chaoyang hospital.

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-Hong Du or Wen-Guang Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, RW., Du, RH. & Bu, WG. β-arrestin 2 mediates the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells. J Neuroimmune Pharmacol 9, 582–590 (2014). https://doi.org/10.1007/s11481-014-9556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9556-y

Keywords

Navigation