Skip to main content
Log in

Nickel Nanocluster as a Fluorescent Probe for the Non-enzymatic Detection of Cardiac Troponin I

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Troponin I, as a cardiac-specific biomarker, is a very valuable tool in the identification of acute coronary syndromes. In this work, an economical technique for easy and sensitive diagnosis of cardiac troponin I (cTnI) was developed nanoprobe on the basis of graphene oxide quenching of the fluorescence of bovine serum albumin–capped fluorescent nickel (BSA@NiNCs) nanoclusters. The developed nanoprobe nickel nanocluster exhibited superparamagnetism. The nanoprobe showed a fluorescence turn-on behavior toward incremental addition of in cTnI, with a detection limit of 0.012 ng/mL. We successfully used the proposed sensing technique for cTnI sensing in serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Radha R, Shahzadi SK, Al-Sayah MH (2021) Fluorescent immunoassays for detection and quantification of cardiac troponin i: a short review. Molecules 26:4812. https://doi.org/10.3390/molecules26164812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Global status report on noncommunicable diseases 2014: attaining the nine global noncommunicable diseases targets; a shared responsibility - World | ReliefWeb. https://reliefweb.int/report/world/global-status-report-noncommunicable-diseases-2014-attaining-nine-global?psafe_param=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1KUuKTF5iUZqZZjjV_m6KGK2BHF30LMdc9ySygCfFDSVcp0TbL4-lxoC2PwQAvD_BwE. Accessed 23 Oct 2023

  3. Kottwitz J, Bruno KA, Berg J et al (2020) Myoglobin for detection of high-risk patients with acute myocarditis. J Cardiovasc Transl Res 13:853–863. https://doi.org/10.1007/s12265-020-09957-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar V, Brent JR, Shorie M et al (2016) Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl Mater Interfaces 8:22860–22868. https://doi.org/10.1021/acsami.6b06488

    Article  CAS  PubMed  Google Scholar 

  5. Tang C, Wang AJ, Feng JJ, Cheang TY (2023) Mulberry-like porous-hollow AuPtAg nanorods for electrochemical immunosensing of biomarker myoglobin. Microchimica Acta. https://doi.org/10.1007/s00604-023-05802-2

    Article  PubMed  Google Scholar 

  6. Grabowska I, Sharma N, Vasilescu A et al (2018) Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega 3:12010–12018. https://doi.org/10.1021/acsomega.8b01558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maalouf R, Bailey S (2016) A review on B-type natriuretic peptide monitoring: assays and biosensors. Heart Fail Rev 21:567–578. https://doi.org/10.1007/s10741-016-9544-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pourali A, Rashidi MR, Barar J et al (2021) Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction. TrAC, Trends Anal Chem 134:116123. https://doi.org/10.1016/j.trac.2020.116123

    Article  CAS  Google Scholar 

  9. Takashio S, Yamamuro M, Izumiya Y et al (2018) Diagnostic utility of cardiac troponin T level in patients with cardiac amyloidosis. ESC Heart Fail 5:27–35. https://doi.org/10.1002/ehf2.12203

    Article  PubMed  Google Scholar 

  10. Varghese S, Madanan AS, Abraham MK et al (2023) “Turn-on” fluorescence sensing of cardiac troponin I based on MnO2 nanosheet quenched mercaptopropionic acid capped Mn2+ doped zinc sulphide quantum dots. Microchem J 194:109327. https://doi.org/10.1016/j.microc.2023.109327

    Article  CAS  Google Scholar 

  11. Anju SM, Varghese S, Merin KA et al (2023) Non-enzymatic detection of cardiac troponin − I using polyethylene imine-stabilized fluorescent gold nanoclusters. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2023.134081

    Article  Google Scholar 

  12. Spain E, Carrara S, Adamson K et al (2018) Cardiac troponin i: ultrasensitive detection using faradaic electrochemical impedance. ACS Omega 3:17116–17124. https://doi.org/10.1021/acsomega.8b01758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabek J, Martínez-Pérez P, García-Rupérez J (2019) Computational binding study of cardiac troponin I antibody towards cardiac versus skeletal troponin I. Comput Biol Chem 80:147–151. https://doi.org/10.1016/J.COMPBIOLCHEM.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  14. Camen S, Palosaari T, Reinikainen J et al (2020) Cardiac troponin I and incident stroke in European cohorts: insights from the BiomarCaRE project. Stroke 51:2770–2777. https://doi.org/10.1161/STROKEAHA.120.029452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahajan VS, Jarolim P (2011) How to interpret elevated cardiac troponin levels. Circulation 124:2350–2354. https://doi.org/10.1161/CIRCULATIONAHA.111.023697

    Article  PubMed  Google Scholar 

  16. Ather S, Hira RS, Shenoy M et al (2013) Recurrent low-level troponin I elevation is a worse prognostic indicator than occasional injury pattern in patients hospitalized with heart failure. Int J Cardiol 166:394–398. https://doi.org/10.1016/j.ijcard.2011.10.113

    Article  PubMed  Google Scholar 

  17. Farmakis D, Richter D, Chronopoulou G et al (2023) High-sensitivity cardiac troponin I for cardiovascular risk stratification in apparently healthy individuals. Hellenic J Cardiol

  18. Chen D, Gong Y, Jin Y (2022) Detection of cardiac troponin I in serum by CMK-3/AuNPs-based electrochemical sensor. Int J Electrochem Sci. https://doi.org/10.20964/2022.07.31

    Article  PubMed  Google Scholar 

  19. Feng S, Yan M, Xue Y et al (2021) Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal Chem 93:13572–13579. https://doi.org/10.1021/ACS.ANALCHEM.1C02636/SUPPL_FILE/AC1C02636_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  20. Wen R, Zhou C, Tian J, Lu J (2023) Confined catalysis of MOF-818 nanozyme and colorimetric aptasensing for cardiac troponin I. Talanta. https://doi.org/10.1016/j.talanta.2022.123830

    Article  PubMed  Google Scholar 

  21. Han GR, Kim MG (2020) Highly sensitive chemiluminescence-based lateral flow immunoassay for cardiac troponin I detection in human serum. Sensors (Switzerland). https://doi.org/10.3390/s20092593

    Article  PubMed Central  Google Scholar 

  22. Dittmer WU, Evers TH, Hardeman WM et al (2010) Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clin Chim Acta 411:868–873. https://doi.org/10.1016/j.cca.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  23. Rezaee MA, Rasaee MJ, Mohammadnejad J (2017) Selection of specific inhibitor peptides in enzyme-linked immunosorbent assay (ELISA) of cardiac troponin I using immuno-dominant epitopes as competitor. J Immunoassay Immunochem 38:72–81. https://doi.org/10.1080/15321819.2016.1216444

    Article  CAS  PubMed  Google Scholar 

  24. Song SY, Han YD, Kim K et al (2011) A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens Bioelectron 26:3818–3824. https://doi.org/10.1016/J.BIOS.2011.02.036

    Article  CAS  PubMed  Google Scholar 

  25. Du D, Shu J, Guo M et al (2020) Potential-resolved differential electrochemiluminescence immunosensor for cardiac troponin I based on MOF-5-wrapped CdS quantum dot nanoluminophores. Anal Chem 92:14113–14121. https://doi.org/10.1021/ACS.ANALCHEM.0C03131/SUPPL_FILE/AC0C03131_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  26. Ni E, Ni E, Fang Y et al (2020) A one-step potentiometric immunoassay for plasma cardiac troponin I using an antibody-functionalized bis-MPA-COOH dendrimer as a competitor with improved sensitivity. Anal Methods 12:2914–2921. https://doi.org/10.1039/d0ay00680g

    Article  CAS  PubMed  Google Scholar 

  27. Campu A, Muresan I, Craciun AM et al (2022) Cardiac troponin biosensor designs: current developments and remaining challenges. Int J Mol Sci 23(3):7728. https://doi.org/10.3390/ijms23147728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pu S, Shi C, Lv C et al (2023) Tb3+-based off-on fluorescent platform for multicolor and dosage-sensitive visualization of bacterial spore marker. Anal Chem 95:8137–8144. https://doi.org/10.1021/acs.analchem.3c01542

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Liu H, Jiang Y et al (2018) Detection of various biomarkers and enzymes via a nanocluster-based fluorescence turn-on sensing platform. Anal Chem 90:14578–14585. https://doi.org/10.1021/acs.analchem.8b04691

    Article  CAS  PubMed  Google Scholar 

  30. Abraham MK, Anand V, Madanan AS et al (2023) Fluorescence “turn-off-on” detection of heparin and protamine based on bovine serum albumin-stabilized carbon dots (BSA-CDs). ChemNanoMat. https://doi.org/10.1002/cnma.202300115

    Article  Google Scholar 

  31. Anju SM, Asokan AO, Varghese S et al (2023) Ferric ions modulated carbon dots as a fluorescent probe for the detection of neopterin: an inflammatory prognostic marker for risk prediction and severity of Covid-19. Chemistry Select. https://doi.org/10.1002/slct.202300178

    Article  Google Scholar 

  32. Cai Y, Kang K, Li Q et al (2018) Rapid and sensitive detection of cardiac troponin I for point-of-care tests based on red fluorescent microspheres. Molecules 23:1102. https://doi.org/10.3390/molecules23051102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, Wang S, Lu S et al (2019) Fluorometric and colorimetric dual-readout immunoassay based on an alkaline phosphatase-triggered reaction. Anal Chem 91:7828–7834. https://doi.org/10.1021/acs.analchem.9b01553

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Dai W, Lv X, Deng Y (2018) Aptamer-based rolling circle amplification coupled with graphene oxide-based fluorescence resonance energy transfer for sensitive detection of cardiac troponin i. Anal Methods 10:1767–1773. https://doi.org/10.1039/c8ay00309b

    Article  CAS  Google Scholar 

  35. Raj V, Alex S (2021) Non-enzymatic colorimetric sensor for cardiac Troponin I (cTnI) based on self-assembly of gold nanorods on heparin. Gold Bull 54:1–7. https://doi.org/10.1007/s13404-020-00287-w

    Article  CAS  Google Scholar 

  36. Wang Y, Mu Y, Hu J et al (2019) Rapid, one-pot, protein-mediated green synthesis of water-soluble fluorescent nickel nanoclusters for sensitive and selective detection of tartrazine. Spectrochim Acta A Mol Biomol Spectrosc 214:445–450. https://doi.org/10.1016/j.saa.2019.02.055

    Article  CAS  PubMed  Google Scholar 

  37. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  38. Habibi MH, Fakhri F (2017) Hydrothermal synthesis of nickel iron oxide nano-composite and application as magnetically separable photocatalyst for degradation of Solar Blue G dye. J Mater Sci: Mater Electron 28:14091–14096. https://doi.org/10.1007/s10854-017-7261-3

    Article  CAS  Google Scholar 

  39. Ali SR, De M (2022) Superparamagnetic nickel nanocluster-embedded MoS2 nanosheets for Gram-selective bacterial adhesion and antibacterial activity. ACS Biomater Sci Eng 8:2932–2942. https://doi.org/10.1021/acsbiomaterials.2c00257

    Article  CAS  PubMed  Google Scholar 

  40. Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499. https://doi.org/10.1016/j.bios.2015.12.083

    Article  CAS  PubMed  Google Scholar 

  41. Taniselass S, Arshad MKM, Gopinath SCB (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292

    Article  CAS  PubMed  Google Scholar 

  42. Marston S, Zamora JE (2020) Troponin structure and function: a view of recent progress. J Muscle Res Cell Motil 41:71–89. https://doi.org/10.1007/s10974-019-09513-1

    Article  CAS  PubMed  Google Scholar 

  43. Tuteja SK, Priyanka BV et al (2014) Graphene-gated biochip for the detection of cardiac marker troponin I. Anal Chim Acta 809:148–154. https://doi.org/10.1016/j.aca.2013.11.047

    Article  CAS  PubMed  Google Scholar 

  44. Tuteja SK, Kukkar M, Suri CR et al (2015) One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI. Biosens Bioelectron 66:129–135. https://doi.org/10.1016/j.bios.2014.10.072

    Article  CAS  PubMed  Google Scholar 

  45. Sun D, Luo Z, Lu J et al (2019) Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens Bioelectron 134:49–56. https://doi.org/10.1016/j.bios.2019.03.049

    Article  CAS  PubMed  Google Scholar 

  46. Abraham MK, Anju SM, Varghese S et al (2023) NaYF4: Yb/Ho upconversion nanoprobe incorporated gold nanoparticle (AuNP) based FRET immunosensor for the “turn-on” detection of cardiac troponin I. Analyst. https://doi.org/10.1039/d3an01405c

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Head of the Chemistry Department at the University of Kerala in Thiruvananthapuram, Kerala, for his support and the use of the department’s laboratory and instruments and University of Kerala and CLIF, University of Kerala, for the sophisticated instrumental analysis offered. The authors Ali Ibrahim Shkhair and Geneva Indongo thank the Government of India for the Indian Council for Cultural Relationship (ICCR) scholarship.

Funding

This research was funded by the Indian Council for Cultural Relations ICCR with Ref. No. RBI0072494658807.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The author, Anju S Madanan, conceived the idea of the work. Ali Ibrahim Shkhair performed design, material preparation, data collection, and analysis. Ali Ibrahim Shkhair wrote the original manuscript draft, and Susan Varghese, Merin K. Abraham, Geneva Indongo, Greeshma Rajeevan, and Arathy B. K and Sara Muneer Abbas commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sony George.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 133 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkhair, A.I., Madanan, A.S., Varghese, S. et al. Nickel Nanocluster as a Fluorescent Probe for the Non-enzymatic Detection of Cardiac Troponin I. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02311-7

Keywords

Navigation