Skip to main content

Advertisement

Log in

Freshly Prepared Graphene Oxide Nanoparticles’ Wound-Healing Potential and Antibacterial Activity Specifically Against Staphylococcus aureus: In Vivo Efficacy and Clinical Isolate Evaluation

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) exhibits several characteristics worthy of biomedical applications. The current study aimed to synthesize graphene oxide nanoparticles (GONPs) for antibacterial and wound-healing efficacy evaluations. The GONPs were prepared using Hummer’s method and characterized by FT-IR, UV-Vis, Raman, SEM spectroscopic, and electron micrograph-based analyses, respectively, to confirm the structure and morphology. The analyses revealed GONPs as flaky, nano-sheeted structures with irregular shapes and sizes that were stacked on top of each other. The clinical isolates of gram-negative, i.e., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, as well as gram-positive, i.e., Staphylococcus aureus, microbes were incubated for 24 h at 37 ℃ with 62.5, 125, and 250 µg/ml concentrations of the freshly prepared GONPs which showed significant antimicrobial activity. All the pathogens were comparatively more active to 250 µg/ml concentration of GONPs with inhibition zone diameters reaching 17.06, 15.10, 31.00, and 18.36 mm, respectively, as compared with the 250 µg/ml concentration of cephalexin. The S. aureus–infected mouse wound-infection model utilized for in vivo investigation showed healing, when treated, twice daily, for 15 days, with GONPs at 250 and 500 mg/kg doses. The wound’s contraction was observed to assess the therapeutic efficacy of the GONPs. The average wound healing of the treated groups was higher than that of the control. The animal groups treated with 500 mg/kg GONPs performed the highest levels of healing, reaching 99% of the healed animals within 15 days. Current findings suggested the potential of GONPs to serve as an agent for wound healing with antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon request.

References

  1. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14:244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155

    Article  CAS  PubMed  Google Scholar 

  3. Tomic-Canic M, Burgess JL, O’Neill KE et al (2020) Skin microbiota and its interplay with wound healing. Am J Clin Dermatol 21:36–43

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sachdeva C, Satyamoorthy K, Murali TS (2022) Microbial interplay in skin and chronic wounds. Curr Clin Microbiol Reports 9:21–31

    Article  Google Scholar 

  5. Brouwer S, Rivera-Hernandez T, Curren BF et al (2023) Pathogenesis, epidemiology and control of group A Streptococcus infection. Nat Rev Microbiol 21:431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. In: JIDSP. Elsevier, pp 170–174

    Google Scholar 

  7. Ioannou P, Tsagkaraki E, Athanasaki A et al (2018) Gram-negative bacteria as emerging pathogens affecting mortality in skin and soft tissue infections. Hippokratia 22:23

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25:1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arroyo V, Moreau R, Kamath PS et al (2016) Acute-on-chronic liver failure in cirrhosis. Nat Rev Dis Prim 2:1–18

    Google Scholar 

  10. Morris A (2014) Heart–lung interaction via infection. Ann Am Thorac Soc 11:S52–S56

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nathan C (2020) Resisting antimicrobial resistance. Nat Rev Microbiol 18:259–260

    Article  CAS  PubMed  Google Scholar 

  12. Naylor NR, Atun R, Zhu N et al (2018) Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control 7:1–17

    Article  Google Scholar 

  13. Mohammed HA, Amin MA, Zayed G et al (2023) In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. J Antibiot (Tokyo) 76:291–300

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Song G, Sun M et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 10:107. https://doi.org/10.3389/fcimb.2020.00107

    Article  PubMed  PubMed Central  Google Scholar 

  15. World Health Organization (2021) Global antimicrobial resistance and use surveillance system (GLASS) report: 2021. https://www.who.int/initiatives/glass. Accessed 16 Apr 2024

  16. Bobbarala V (2012) A search for antibacterial agents. BoD–Books on Demand

    Book  Google Scholar 

  17. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yougbaré S, Mutalik C, Okoro G et al (2021) Emerging trends in nanomaterials for antibacterial applications. Int J Nanomedicine 16:5831–5867

    Article  PubMed  PubMed Central  Google Scholar 

  19. Asim FA, Al-Mosawe EHA, Hussain WA (2022) The medical study of denture base resin poly(methyl methacrylate) reinforced by ZnO and TCP nanoparticles. J Appl Sci Nanotechnol 2:70–79. https://doi.org/10.53293/jasn.2022.4073.1137

    Article  Google Scholar 

  20. Ashij MA, Al-Shmgani HS, Sulaiman GM et al (2023) Investigation of antibacterial activity and wound healing promotion properties induced by bromelain-loaded silver nanoparticles. Plasmonics 1–14. https://doi.org/10.1007/s11468-023-02127-x

  21. Qureshi KA, Mohammed SAA, Khan O et al (2022) Cinnamaldehyde-based self-nanoemulsion (CA-SNEDDS) accelerates wound healing and exerts antimicrobial, antioxidant, and anti-inflammatory effects in rats’ skin burn model. Molecules 27:5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohammed HA, Mohammed SAA, Khan O, Ali HM (2022) Topical eucalyptol ointment accelerates wound healing and exerts antioxidant and anti-inflammatory effects in rats’ skin burn model. J Oleo Sci 71:1777–1788

    Article  CAS  PubMed  Google Scholar 

  23. Xia M-Y, Xie Y, Yu C-H et al (2019) Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release 307:16–31

    Article  CAS  PubMed  Google Scholar 

  24. Gurunathan S, Woong Han J, Abdal Daye A et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901. https://doi.org/10.2147/IJN.S37397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Liu L, Li F (2015) Graphene oxide: physics and applications. Springer

    Book  Google Scholar 

  27. Soliman M, Sadek AA, Abdelhamid HN, Hussein K (2021) Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res Vet Sci 137:262–273

    Article  CAS  PubMed  Google Scholar 

  28. Palmieri V, Papi M, Conti C et al (2016) The future development of bacteria fighting medical devices: the role of graphene oxide. Expert Rev Med Devices 13:1013–1019

    Article  CAS  PubMed  Google Scholar 

  29. Al Rugaie O, Jabir M, Kadhim R et al (2021) Gold nanoparticles and graphene oxide flakes synergistic partaking in cytosolic bactericidal augmentation: role of ROS and NOX2 activity. Microorganisms 9:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y (2017) Application of graphene oxide in water treatment. IOP Conference Series: Earth and Environmental Science. IOP Publishing, p 12060

    Google Scholar 

  31. Morimoto N, Kubo T, Nishina Y (2016) Tailoring the oxygen content of graphite and reduced graphene oxide for specific applications. Sci Rep 6:21715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choudhary P, Das SK (2019) Bio-reduced graphene oxide as a nanoscale antimicrobial coating for medical devices. ACS Omega 4:387–397

    Article  CAS  Google Scholar 

  33. Choudhary P, Parandhaman T, Ramalingam B et al (2017) Fabrication of nontoxic reduced graphene oxide protein nanoframework as sustained antimicrobial coating for biomedical application. ACS Appl Mater Interfaces 9:38255–38269

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Wen J, Gao Y et al (2018) Antibacterial graphene oxide coatings on polymer substrate. Appl Surf Sci 436:624–630

    Article  CAS  Google Scholar 

  35. Ramalingam V, Raja S, Sundaramahalingam S, Rajaram R (2019) Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens. Bioorg Chem 83:326–335

    Article  CAS  PubMed  Google Scholar 

  36. Szunerits S, Boukherroub R (2016) Antibacterial activity of graphene-based materials. J Mater Chem B 4:6892–6912

    Article  CAS  PubMed  Google Scholar 

  37. Das MR, Sarma RK, Saikia R et al (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surfaces B Biointerfaces 83:16–22

    Article  CAS  PubMed  Google Scholar 

  38. Bhatt S, Punetha VD, Pathak R et al (2023) Graphene in nanomedicine: a review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces 226:113323. https://doi.org/10.1016/j.colsurfb.2023.113323

    Article  CAS  PubMed  Google Scholar 

  39. Farouk A, Saeed SE-S, Sharaf S, Abd El-Hady MM (2020) Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite. RSC Adv 10:41600–41611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  41. Mohsin MH, Khashan KS, Sulaiman GM et al (2023) A novel facile synthesis of metal nitride@ metal oxide (BN/Gd2O3) nanocomposite and their antibacterial and anticancer activities. Sci Rep 13:22749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manandhar S, Luitel S, Dahal RK (2019) In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med 2019:1895340. https://doi.org/10.1155/2019/1895340

    Article  PubMed  PubMed Central  Google Scholar 

  43. Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH (2017) Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif cells, nanomedicine, Biotechnol 45:1234–1240

    Article  CAS  Google Scholar 

  44. Hussein KH, Abdelhamid HN, Zou X, Woo H-M (2019) Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Mater Sci Eng C 94:484–492

    Article  CAS  Google Scholar 

  45. Govindasamy GA, Mydin RBSMN, Gadaime NKR, Sreekantan S (2023) Phytochemicals, biodegradation, cytocompatibility and wound healing profiles of chitosan film embedded green synthesized antibacterial ZnO/CuO nanocomposite. J Polym Environ 31:4393–4409

    Article  CAS  Google Scholar 

  46. Wazir AH, Kundi IW (2016) Synthesis of graphene nano sheets by the rapid reduction of electrochemically exfoliated graphene oxide induced by microwaves. J Chem Soc Pak 8:11–16

    Google Scholar 

  47. Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. https://doi.org/10.1021/nn202451x

    Article  CAS  PubMed  Google Scholar 

  48. Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  49. Fröhlich EE, Fröhlich E (2016) Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int J Mol Sci 17:509

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pulingam T, Thong KL, Ali ME et al (2019) Graphene oxide exhibits differential mechanistic action towards gram-positive and gram-negative bacteria. Colloids Surfaces B Biointerfaces 181:6–15

    Article  CAS  PubMed  Google Scholar 

  51. Khashan KS, Sulaiman GM, Mahdi R (2017) Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity. Artif cells, nanomedicine, Biotechnol 45:1699–1709

    Article  CAS  Google Scholar 

  52. Olczak K, Jakubowski W, Szymański W (2023) Bactericidal activity of graphene oxide tests for selected microorganisms. Materials (Basel) 16:4199

    Article  CAS  PubMed  Google Scholar 

  53. Kumar P, Huo P, Zhang R, Liu B (2019) Antibacterial properties of graphene-based nanomaterials Nanomaterials 9:737. https://doi.org/10.3390/nano9050737

    Article  CAS  PubMed  Google Scholar 

  54. Zhang N, Hou J, Chen S et al (2016) Rapidly probing antibacterial activity of graphene oxide by mass spectrometry-based metabolite fingerprinting. Sci Rep 6:28045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whitehead KA, Vaidya M, Liauw CM et al (2017) Antimicrobial activity of graphene oxide-metal hybrids. Int Biodeterior Biodegradation 123:182–190

    Article  CAS  Google Scholar 

  56. Ng IMJ, Shamsi S (2022) Graphene oxide (GO): a promising nanomaterial against infectious diseases caused by multidrug-resistant bacteria. Int J Mol Sci 23:9096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Govindasamy GA, Mydin RBSMN, Effendy WNFWE, Sreekantan S (2022) Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: physicochemical, bactericidal, cytocompatibility and wound healing profiles. Materials Today Communications 33:104545

    Article  CAS  Google Scholar 

  58. Kavaz D, Abubakar AL, Rizaner N, Umar H (2021) Biosynthesized ZnO nanoparticles using Albizia lebbeck extract induced biochemical and morphological alterations in Wistar rats. Molecules 26:3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kavaz D, Umar H, Shehu S (2018) Synthesis, characterization, antimicrobial and antimetastatic activity of silver nanoparticles synthesized from Ficus ingens leaf. Artificial Cells, Nanomedicine, and Biotechnology 46:S1193–S1203

    Article  CAS  PubMed  Google Scholar 

  60. Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M (2019) Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep 9:17439

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fakhri A, Kahi DS (2017) Synthesis and characterization of MnS2/reduced graphene oxide nanohybrids for with photocatalytic and antibacterial activity. J Photochem Photobiol, B 166:259–263

    Article  CAS  PubMed  Google Scholar 

  62. Stavitskaya A, Sitmukhanova E, Sayfutdinova A et al (2022) Photoinduced antibacterial activity and cytotoxicity of CdS stabilized on mesoporous aluminosilicates and silicates. Pharmaceutics 14:1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mukherjee S, Sriram P, Barui AK et al (2015) Graphene oxides show angiogenic properties. Adv Healthc Mater 4:1722–1732

    Article  CAS  PubMed  Google Scholar 

  64. Qiu Y, Wang Z, Owens ACE et al (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744–11755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang P, Han L, Li P et al (2019) Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl Mater Interfaces 11:7703–7714

    Article  CAS  PubMed  Google Scholar 

  66. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Emadi F, Amini A, Gholami A, Ghasemi Y (2017) Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci Rep 7:42258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruiz ON, Fernando KAS, Wang B et al (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107

    Article  CAS  PubMed  Google Scholar 

  69. Chen G-Y, Pang D-P, Hwang S-M et al (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33:418–427

    Article  PubMed  Google Scholar 

  70. Yoon HH, Bhang SH, Kim T et al (2014) Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier. Adv Funct Mater 24:6455–6464

    Article  CAS  Google Scholar 

  71. Qasim M, Baipaywad P, Udomluck N et al (2014) Enhanced therapeutic efficacy of lipophilic amphotericin B against Candida albicans with amphiphilic poly(N-isopropylacrylamide) nanogels. Macromol Res 22:1125–1131

    Article  CAS  Google Scholar 

  72. Gurunathan S, Woong Han J, Kim E et al (2014) Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. Journal of Nanobiotechnology 12:41

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kiew SF, Kiew LV, Lee HB et al (2016) Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Control Release 226:217–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the University of Technology, Baghdad, Iraq, and Qassim University, Qassim, Saudi Arabia for their technical support, encouragement, and facilities.

Funding

No funding was received for this project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: Wisam A. Fadhil, Iman I. Jabbar, and Entesar H. Ali; formal analysis: Ghassan M. Sulaiman; investigation and data curation: Ghassan M. Sulaiman, Riaz A. Khan, and Hamdoon A. Mohammed; validation: Riaz A. Khan and Hamdoon A. Mohammed; visualization: Riaz A. Khan and Hamdoon A. Mohammed; original draft preparation: Wisam A. Fadhil, Iman I. Jabbar, and Entesar H. Ali; writing—review and editing: Ghassan M. Sulaiman, Riaz A. Khan, and Hamdoon A. Mohammed; supervision: Iman I. Jabbar and Entesar H. Ali. All authors gave approval to the final version of the manuscript.

Corresponding authors

Correspondence to Ghassan M. Sulaiman or Hamdoon A. Mohammed.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhil, W.A., Jabbar, I.I., Ali, E.H. et al. Freshly Prepared Graphene Oxide Nanoparticles’ Wound-Healing Potential and Antibacterial Activity Specifically Against Staphylococcus aureus: In Vivo Efficacy and Clinical Isolate Evaluation. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02296-3

Keywords

Navigation