Skip to main content
Log in

Multi-parameter Gold-Film Embedded PCF Sensors Based on Surface Plasmon Resonance

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel multi-purpose sensor based on photonic crystal fiber and surface plasmon resonance is proposed, in which a gold film is deposited on the outer surface of the photonic crystal fiber to stimulate the surface plasmon resonance, and polydimethylsiloxane is deposited on the outer of the gold film for temperature sensing. Numerical results show that the proposed sensor can be used to achieve both independent detection of temperature and refractive index and simultaneous measurement of temperature and refractive index. When it is only used for temperature sensing, which can realize ultra-wide temperature detection in the range of − 1 ~ 110 ℃; and when the temperature is − 1 ℃, the maximum temperature sensitivity and resolution can be obtained as 40 nm/℃ and 2.5 × 10–4 ℃, respectively. When it is only used for analyte refractive index sensing, the achievable refractive index detection range is 1.36 ~ 1.418, and when the analyte refractive index is 1.418, the maximal wavelength sensitivity is 66666.67 nm/RIU. When it is used for dual-parameter sensing of refractive index and temperature, the sensor can achieve cross-free temperature and analyte refractive index detection of − 1 ~ 10 ℃ and 1.36 ~ 1.40 within the wavelength of 500 ~ 1350 nm; meanwhile, the average temperature and wavelength sensitivities that can be obtained as 20 nm/℃ and 5250 nm/RIU, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang Q, Song H, Zhu AS, Qiu FM (2021) A label-free and anti-interference dual-channel SPR fiber optic sensor with self-compensation for biomarker detection. IEEE Trans Instrum Meas 70:7002007. https://doi.org/10.1109/tim.2020.3039627

    Article  Google Scholar 

  2. Chen CK, Chang MH, Wu HT, Lee YC, Yen TJ (2014) Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array. Biosens Bioelectron 60:343–350. https://doi.org/10.1016/j.bios.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  3. Diffo TV, Fotue AJ, Kenfack SC, Tsiaze RMK, Baloitcha E, Hounkonnou MN (2021) Thermodynamic properties of a monolayer transition metal dichalcogenide (TMD) quantum dot in the presence of magnetic field. Phys Lett A 385:126958. https://doi.org/10.1016/j.physleta.2020.126958

    Article  CAS  Google Scholar 

  4. Chen YF, Wang Y, Chen RY, Yang WK, Liu H, Liu TG, Han Q (2016) A hybrid multimode interference structure-based refractive index and temperature fiber sensor. IEEE Sens J 16(2):331–335. https://doi.org/10.1109/jsen.2015.2484346

    Article  ADS  CAS  Google Scholar 

  5. Li B, Zhang F, Yan X, Zhang XN, Wang F, Li SG, Cheng TL (2021) Numerical analysis of dual-parameter optical fiber sensor with large measurement range based on surface plasmon resonance. IEEE Sens J 21(9):10719–10725. https://doi.org/10.1109/jsen.2021.3062839

    Article  ADS  CAS  Google Scholar 

  6. Zawisza R, Eftimov T, Mikulic P, Bock WJ, Jaroszewicz LR (2018) Ambient refractive-index measurement with simultaneous temperature monitoring based on a dual-resonance long-period grating inside a fiber loop mirror structure. Sensors 18(7):2370. https://doi.org/10.3390/s18072370

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Abdelmalek F (2001) Study of the optical properties of corroded gold–aluminum films using surface plasmon resonances. Thin Solid Films 389(1–2):296–300. https://doi.org/10.1016/S0040-6090(01)00886-0

    Article  ADS  CAS  Google Scholar 

  8. Rao YJ (2017) Recent progress in ultra-long distributed fiber-optic sensing. Acta Phys Sin 66(7):074207. https://doi.org/10.7498/aps.66.074207

    Article  CAS  Google Scholar 

  9. Min R, Liu ZY, Pereira L, Yang CK, Sui Q, Marques C (2021) Optical fiber sensing for marine environment and marine structural health monitoring: a review. Opt Laser Technol 140:107082. https://doi.org/10.1016/j.optlastec.2021.107082

    Article  CAS  Google Scholar 

  10. Leal AG, Theodosiou A, Min R (2019) Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers. IEEE Sens J 19(11):4054–4061. https://doi.org/10.1109/jsen.2019.2898722

    Article  ADS  CAS  Google Scholar 

  11. Klantsataya E, Jia PP, Ebendorff-Heidepriem H, Monro TM, François A (2017) Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors 17(1):12. https://doi.org/10.3390/s17010012

    Article  ADS  Google Scholar 

  12. Kim YC, Peng W, Banerji S, Booksh KS (2005) Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt Lett 30(17):2218–2220. https://doi.org/10.1364/ol.30.002218

    Article  ADS  PubMed  Google Scholar 

  13. Kim HM, Park JH, Lee SK (2020) Fabrication and measurement of fiber optic surface plasmon resonance sensor based on polymer microtip and gold nanoparticles composite. IEEE Sens J 20(17):9895–9900. https://doi.org/10.1109/jsen.2020.2992768

    Article  ADS  CAS  Google Scholar 

  14. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14(24):11616–11621. https://doi.org/10.1364/oe.14.011616

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Luan NN, Wang R, Lv WH, Yao JQ (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582. https://doi.org/10.1364/oe.23.008576

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wang JS, Pei L, Weng SJ, Wu LY, Huang L, Ning TG, Li J (2017) Magneto-modulating polarization converter based on a dual-core photonic crystal fiber. J Lightwave Technol 35(14):2772–2777. https://doi.org/10.1109/jlt.2017.2697725

    Article  ADS  CAS  Google Scholar 

  17. Rifat AA, Mahdiraji GA, Chow DM, Shee YG, Ahmed R, Adikan FRM (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5):11499–11510. https://doi.org/10.3390/s150511499

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu C, Wang FM, Lv JW, Sun T, Liu Q, Fu CF, Mu HW, Chu PK (2016) A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt Commun 359:378–382. https://doi.org/10.1016/j.optcom.2015.09.108

    Article  ADS  CAS  Google Scholar 

  19. Rifat AA, Ahmed R, Yetisen AK (2017) Photonic crystal fiber based plasmonic sensors. Sens Actuators B Chem 243:311–325. https://doi.org/10.1016/j.snb.2016.11.113

    Article  CAS  Google Scholar 

  20. Pathak AK, Viphavakit C, Rahman BMA, Singh VK (2021) A highly sensitive SPR refractive index sensor based on microfluidic channel assisted with graphene-ag composite nanowire. IEEE Photon J 13(2):1–8. https://doi.org/10.1109/jphot.2021.3069396

    Article  CAS  Google Scholar 

  21. Luan NN, Wang R, Lv WH, Lu Y, Yao JQ (2014) Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14(9):16035–16045. https://doi.org/10.3390/s140916035

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Xia L, Li C (2018) Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon J 10(1):1–9. https://doi.org/10.1109/jphot.2018.2790424

    Article  CAS  Google Scholar 

  23. Liu C, Wang JW, Wang FM (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464:125496. https://doi.org/10.1016/j.optcom.2020.125496

    Article  CAS  Google Scholar 

  24. Chen JP, Hou SL, Lei JL (2021) An ultra-sensitive medical sensor for low refractive index analytes. Jpn J Appl Phys 60(3):030908. https://doi.org/10.35848/1347-4065/abe8a4

    Article  ADS  CAS  Google Scholar 

  25. Liu QM, Hou SL, Dong J, Lei JL, Wu G, Yan ZY (2023) D-shaped microstructure fiber temperature sensor based on surface plasmon resonance. Jpn J Appl Phys 62(9):096002. https://doi.org/10.35848/1347-4065/acf69e

    Article  ADS  Google Scholar 

  26. Erdogan I, Dogan Y (2023) Au-TiO2-graphene grated highly sensitive D-shaped SPR refractive index sensor. Plasmonics 18(3):1203–1210. https://doi.org/10.1007/s11468-023-01847-4

    Article  CAS  Google Scholar 

  27. Yang XC, Lu Y, Liu BL, Yao JQ (2017) Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF. Appl Opt 56(15):4369–4374. https://doi.org/10.1364/ao.56.004369

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yasli A, Ademgil H, Haxha S, Aggoun A (2020) Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photon J 12(1):1–15. https://doi.org/10.1109/jphot.2019.2961110

    Article  CAS  Google Scholar 

  29. Wang HR, Dai WY, Cai X, Xiang ZW, Fu HY (2021) Half-side PDMS-coated dual-parameter PCF sensor for simultaneous measurement of seawater salinity and temperature. Opt Fiber Technol 65:102608. https://doi.org/10.1016/j.yofte.2021.102608

    Article  CAS  Google Scholar 

  30. Yin ZY, Jing XL, Zhang H, Wang CJ, Liu CY, Shao PS (2022) Dual-parameter sensor for simultaneously measuring refractive index and temperature based on no-core fiber and SPR effect. Optik 266:169320. https://doi.org/10.1016/j.ijleo.2022.169320

    Article  ADS  CAS  Google Scholar 

  31. Teng CX, Peng S, Rui M, Deng HC, Chen M, Deng SJ, Hu XH, Marques C, Yuan LB (2023) Simultaneous measurement of refractive index and temperature based on a side-polish and V-groove plastic optical fiber SPR sensor. Opt Lett 48(2):235–238. https://doi.org/10.1364/ol.478685

    Article  ADS  CAS  Google Scholar 

  32. Hernández-Romano I, Cruz-Garcia MA, Moreno-Hernández C, Monzón-Hernández D, López-Figueroa EO, Paredes-Gallardo OE, Torres-Cisneros M, Villatoro J (2016) Optical fiber temperature sensor based on a microcavity with polymer overlay. Opt Express 24(5):5654–5661. https://doi.org/10.1364/oe.24.005654

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Liu QM, Hou SL, Lei JL (2022) D型表面等离子共振光纤液体生物传感器设计与分析 Acta Photon Sin 51(9):215–224. https://doi.org/10.3788/gzxb20225109.0906007

    Article  Google Scholar 

  34. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  CAS  Google Scholar 

  35. Li YX, Chen HL, Chen Q, Li HW, Gao ZG (2023) Surface plasmon resonance induced methane gas sensor in hollow core anti-resonant fiber. Opt Fiber Technol 78:103293. https://doi.org/10.1016/j.yofte.2023.103293

    Article  CAS  Google Scholar 

  36. Zhang X, Wang R, Cox FM, Kuhlmey BT, Large MCJ (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15(24):16270–16278. https://doi.org/10.1364/oe.15.016270

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Liu C, Yang L, Su WQ, Wang FM, Sun T, Liu Q, Mu HW, Chu PK (2017) Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt Commun 382:162–166. https://doi.org/10.1016/j.optcom.2016.07.031

    Article  ADS  CAS  Google Scholar 

  38. Lu Y, Wang MT, Hao CJ, Zhao ZQ, Yao JQ (2014) Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon J 6(3):1–7. https://doi.org/10.1109/jphot.2014.2319086

    Article  Google Scholar 

  39. Gupta A, Singh H, Singh A, Singh RK, Tiwari A (2020) D-shaped photonic crystal fiber-based surface plasmon resonance biosensors with spatially distributed bimetallic layers. Plasmonics 15(5):1323–1330. https://doi.org/10.1007/s11468-020-01157-z

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (grant number 61665005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Qingmin Liu. The first draft of the manuscript was written by Qingmin Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shanglin Hou.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Dong, J., Hou, S. et al. Multi-parameter Gold-Film Embedded PCF Sensors Based on Surface Plasmon Resonance. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02263-y

Keywords

Navigation