Skip to main content
Log in

Refractive index and temperature sensor based on dual-D-shapes photonic crystal fiber surface plasmon resonance

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A dual-D-shapes photonic crystal fiber (PCFs) surface plasmon sensor structure is designed in this paper. The finite element method (FEM) is used to study the influence of air hole radius, metal thickness and gap between dual-D-shapes fibers on its sensing performance. In dual-D-shapes sensor, the maximum wavelength sensitivity is up to 12,600 nm/RIU in the RI range of 1.33–1.37, and corresponding resolution is 7.94 × 10–6 RIU−1. Comparing the performance of the single-D-shape PCF sensor, the PCFs sensor has distinct advantages concerning the wavelength sensitivity, resolution, and figure of merits (FOM), but these advantages are at the expense of the detection range. In addition, we also used the sensor to conduct temperature simulation test, and obtained the maximum temperature sensitivity of -6 nm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. C. Caucheteur et al., High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 19(2), 1656–1664 (2011)

    Article  ADS  Google Scholar 

  2. C. Liu et al., Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26(7), 9039–9049 (2018)

    Article  ADS  Google Scholar 

  3. W. Qin et al., Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 58, 1–8 (2014)

    Article  Google Scholar 

  4. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond. 18(1), 269–275 (1902)

    Article  Google Scholar 

  5. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31(3), 213–222 (1941)

    Article  ADS  Google Scholar 

  6. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik. A, Hadrons and nuclei 216(4), 398–410 (1968)

    Article  Google Scholar 

  7. E. Kretschmann, Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Zeitschrift für Physik. A, Hadrons and nuclei 241(4), 313–324 (1971)

    Article  Google Scholar 

  8. S. Chu et al., Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes. IEEE J. Sel. Top. Quantum Electron. 25(2), 1–9 (2019)

    Article  Google Scholar 

  9. B.D. Gupta, R. Kant, [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol. 101, 144–161 (2018)

    Article  ADS  Google Scholar 

  10. J. Wang et al., Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection. Results Phys. 18, 103240–103240 (2020)

    Article  ADS  Google Scholar 

  11. Y. Zhao, Z.-Q. Deng, H.-F. Hu, Fiber-optic SPR sensor for temperature measurement. IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015)

    Article  Google Scholar 

  12. C. Caucheteur, T. Guo, J. Albert, Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407(14), 3883–3897 (2015)

    Article  Google Scholar 

  13. X.H. Fan et al., Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25(13), 14238–14246 (2017)

    Article  ADS  Google Scholar 

  14. M. Piliarik et al., Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B Chem. 90(1–3), 236–242 (2003)

    Article  Google Scholar 

  15. M. Ahmad, L.L. Hench, Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Bisensors Bioelectron. 20(7), 1312–1319 (2005)

    Article  Google Scholar 

  16. L.-H. Feng et al., Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica 62(12), 124207 (2013)

    Article  Google Scholar 

  17. Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)

    Article  Google Scholar 

  18. A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14(24), 11616–11621 (2006)

    Article  ADS  Google Scholar 

  19. A.A. Rifat et al., Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015)

    Article  ADS  Google Scholar 

  20. W. Luo et al., Temperature effects on surface plasmon resonance sensor based on side-polished D-shaped photonic crystal fiber. Measurement 181, 109504–109504 (2021)

    Article  Google Scholar 

  21. M. Tian et al., All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. 285(6), 1550–1554 (2012)

    Article  ADS  Google Scholar 

  22. M.R. Hasan et al., Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 18(1), 133–140 (2018)

    Article  ADS  Google Scholar 

  23. D.J.J. Hu, H.P. Ho, Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photon. 9(2), 257–314 (2017)

    Article  Google Scholar 

  24. S. Selleri et al., Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quant. Electron. 33(4), 359–371 (2001)

    Article  ADS  Google Scholar 

  25. S. Ghahramani, J. Barvestani, B. Meshginqalam, High-performance opening-up dual-core photonic crystal fiber sensors based on surface plasmon resonance. Plasmonics 17(1), 181–191 (2021)

    Article  Google Scholar 

  26. M.A. Khalek et al., Materials effect in sensing performance based on surface plasmon resonance using photonic crystal fiber. Plasmonics 14(4), 861–867 (2018)

    Article  Google Scholar 

  27. W. Sellmeier, Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen. Ann. Phys. 219(6), 272–282 (1871)

    Article  Google Scholar 

  28. E.K. Akowuah et al., Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48(11), 1403–1410 (2012)

    Article  ADS  Google Scholar 

  29. X. Yan et al., Analysis of high sensitivity photonic crystal fiber sensor based on surface plasmon resonance of refractive Indexes of Liquids. Sensors 18(9), 2922–2922 (2018)

    Article  ADS  Google Scholar 

  30. M.R. Islam et al., Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing. Opt. Quant. Electron. 54(9), 1–24 (2022)

    Article  Google Scholar 

  31. M.A. Mollah et al., Plasmonic temperature sensor using D-shaped photonic crystal fiber. Results Phys. 16, 102966–102966 (2020)

    Article  Google Scholar 

  32. I. Danlard, E.K. Akowuah, Design and theoretical analysis of a dual-polarized quasi D-shaped plasmonic PCF microsensor for back-to-back measurement of refractive index and temperature. IEEE Sens. J. 21(8), 9860–9868 (2021)

    Article  ADS  Google Scholar 

  33. A. Hassani, M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B Opt. Phys. 26(8), 1550–1557 (2009)

    Article  ADS  Google Scholar 

  34. A. Vial et al., Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71(8), 085416–085416 (2005)

    Article  ADS  Google Scholar 

  35. B. Han et al., Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Opt. Laser Technol. 113, 46–51 (2019)

    Article  ADS  Google Scholar 

  36. X. Chen, L. Xia, C. Li, Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photonics J. 10(1), 1–9 (2018)

    Google Scholar 

  37. B. Shuai et al., A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 20(6), 5974–5986 (2012)

    Article  ADS  Google Scholar 

  38. T. Wu et al., Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 25(17), 20313–20322 (2017)

    Article  ADS  Google Scholar 

  39. C. Liu et al., Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 13(3), 779–784 (2017)

    Article  Google Scholar 

  40. W. Luo et al., Surface plasmon resonance sensor based on side-polished D-shaped photonic crystal fiber with split cladding air holes. IEEE Trans. Instrum. Meas. 70, 1–11 (2021)

    Google Scholar 

  41. A. Yasli, Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor. Plasmonics 16(5), 1605–1612 (2021)

    Article  Google Scholar 

  42. X. Wang et al., Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film. Opt. Mater. Express 9(7), 3079–3088 (2019)

    Article  ADS  Google Scholar 

  43. Y. Liu et al., Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber. J. Lightwave Technol. 38(4), 919–928 (2020)

    Article  ADS  Google Scholar 

  44. A. Ito, A. Goto, Measurements of refractive index for several liquids and its dependence on temperature. Jpn. Soc. Mech. Eng. 60(576), 2875–2881 (1994)

    Google Scholar 

Download references

Funding

Funding was provided by the National Natural Science Foundation of China (Grant No. U1730141) and Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (Grant No. 6142A04200210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Feng.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Kang, H., Wang, P. et al. Refractive index and temperature sensor based on dual-D-shapes photonic crystal fiber surface plasmon resonance. Eur. Phys. J. Plus 137, 1086 (2022). https://doi.org/10.1140/epjp/s13360-022-03299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03299-x

Navigation