Skip to main content
Log in

Highly Sensitive Plasmonic Biosensor for the Detection of Chikungunya Virus Employing TiO2 and BP/WS2 Heterostructure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A surface plasmon resonance–based biosensor for the detection of chikungunya virus has been proposed in this article. The structure of the sensor is based on the Kretschmann configuration, which includes a BK7 prism, silver (Ag) metal, titanium dioxide (TiO2), a perovskite material (BaTiO3), and a heterostructure 2D nanomaterial (blue phosphorene/tungsten disulfide; BP/WS2). The surface of the 2D heterostructure material is employed for the detection of the analyte, aiming to investigating the alterations in refractive index. Using the transfer matrix method (TMM), the reflectivity of the proposed sensor is analyzed numerically. The investigation also explores the enhancement of sensitivity by considering variations in number and thickness of layers. To confirm the location of resonance angle and substantiate the ultrahigh sensitivity, an examination of the electric field intensity enhancement factor and normalized electric field distribution has been also conducted. The optimization of parameters for the proposed sensor revealed that platelets and plasma cells have a maximum sensitivity of 365°/RIU and 152°/RIU, figures of merit of 94.147 and 73.98, and detection accuracy of 0.2579 and 0.4859 deg−1. The normalized electric field plot suggests a penetration depth of the order of 102 nm which enables long-range sensing and strong field-analyte interaction. The sensor offers high sensitivity and stability and may find useful applications in biomedical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Sharma AK, Pandey AK, Kaur B (2018) Opt Fiber Technol 43:20

    Article  ADS  CAS  Google Scholar 

  2. Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi DK (2020) Micromachines (Basel) 11

  3. Yee SS, nter Gauglitz G (1999) Surface plasmon resonance sensors: review

  4. Homola J, Yee SS, Gauglitz G (1999) Sens Actuators B Chem 54:3

    Article  CAS  Google Scholar 

  5. Byun KM, Kim SJ, Kim D (2007) Appl Opt 46:5703

    Article  ADS  PubMed  Google Scholar 

  6. Asaduzzaman S, Arif MFH, Ahmed K, Dhar P (2015) IEEE International WIE Conference on Electrical and Computer Engineering, WIECON-ECE 2015(1):151 (2016)

  7. Haque MA, Rahad R, Faruque Md O, Mobassir Md S, Sagor RH (2023) Sens Biosens Res 100618

  8. Yadav S, Lohia P, Dwivedi DK (2023) Plasmonics 18:1753

    Article  CAS  Google Scholar 

  9. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Anal Chim Acta 620:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Homola J (2008) Chem Rev 108:462

    Article  CAS  PubMed  Google Scholar 

  11. Mishra AC, Sharma AK, Lohia P, Dwivedi DK (2023) Plasmonics

  12. Umar A, Singh S, Yadav S, Mishra AC, Alhamami MA (2022) 1655

  13. Tamada K, Li X, Wulandari P, Nagahiro T, Michioka K, Toma M, Toma K, Obara D, Nakada T, Hayashi T, Ikezoe Y, Hara M, Katano S, Uehara Y, Kimura Y, Niwano M, Tero R, Okamoto K, Geddes CDD, Geddes CD (2012) Rev Plasmonics 2010

  14. Peters K (2011) Smart Mater Struct 20

  15. Suvarnaphaet P, Pechprasarn S (2017) Sensors (Switzerland) 17

  16. Abdulhalim I, Zourob M, Lakhtakia A (2008) Electromagnetics 28:214

    Article  Google Scholar 

  17. Singh S, Mishra AC, Singh S, Lohia P, Dwivedi DK, Yadav S (2023) Optik (Stuttg) 289

  18. Gan S, Zhao Y, Dai X, Xiang Y (2019) Results Phys 13

  19. Shavanova K, Bakakina Y, Burkova I, Shtepliuk I, Viter R, Ubelis A, Beni V, Starodub N, Yakimova R, Khranovskyy V (2016) Sensors (Switzerland) 16:1

    Article  Google Scholar 

  20. Dahmen C, Schmidt B, Von Plessen G (2007) Nano Lett 7:318

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Appl Phys Lett 88

  22. Karki B, Uniyal A, Chauhan B, Pal A (2022) J Comput Electron 21:445

    Article  CAS  Google Scholar 

  23. Srivastava A, Das R, Prajapati YK (2020) IET Optoelectron 14:256

    Article  Google Scholar 

  24. Sharma AK, Pandey AK (2018) IEEE Photonics Technol Lett 30:595

    Article  ADS  CAS  Google Scholar 

  25. Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Sci Rep 6

  26. Srivastava A, Prajapati YK (2019) Photonic Sensors 9:284

    Article  ADS  CAS  Google Scholar 

  27. Kumar S, Yadav A, Malomed BA (2023) Front Mater 10

  28. Bai J, Zhou B (2014) Chem Rev 114:10131

    Article  CAS  PubMed  Google Scholar 

  29. Karki B, Ramya KC, Sandhya Devi RS, Srivastava V, Pal A (2022) Opt Quantum Electron 54:1

  30. Srivastava S, Singh S, Mishra AC, Lohia P, Dwivedi DK (2023) Plasmonics

  31. Wang Q, Niu LY, Jing JY, Zhao WM (2020) Opt Laser Technol 124:105899

    Article  CAS  Google Scholar 

  32. Karki B, Pal A, Singh Y, Sharma S (2022) Opt Commun 508:127616

    Article  CAS  Google Scholar 

  33. Cai W, Fu C, Gao J, Guo Q, Deng X, Zhang C (2011) Physica B Condens Matter 406:3583

    Article  ADS  CAS  Google Scholar 

  34. Rakic´ AD, Rakic´ R, Djuriš AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices

  35. Yupapin P, Trabelsi Y, Vigneswaran D, Taya SA, Daher MG, Colak I (2022) Plasmonics

  36. Mishra AC, Singh PK, Lohia P, Dwivedi DK (2019) Sens Lett 17:1

    Article  Google Scholar 

  37. Mishra AC, Dandapat K, Tripathi SM, Lohia P, Dwivedi DK (2020) J Opt Commun

  38. Karki B, Uniyal A, Sharma T, Pal A (2022)

  39. Pal A, Jha A (2021) Optik (Stuttg) 231:166378

    Article  ADS  CAS  Google Scholar 

  40. Yadav A, Kumar A, Sharan P (2022) J Opt Soc Am B 39:200

    Article  ADS  CAS  Google Scholar 

  41. Singh S, Sharma AK, Lohia P, Dwivedi DK, Kumar V, Singh PK (2023) Physica Scripta 98

  42. Kashyap R, Baruah UR, Gogoi A, Mondal B (2023) Plasmonics 18:1679

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Researchers Supporting Project (Number RSP2024R161) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Yashaswini Singh wrote original manuscript and analyzed the results, Adarsh Chandra Mishra and Sapana Yadav provided software support, conceptualized and reviewed the work, while Pooja Lohia, M. Khalid Hossain, D.K. Dwivedi and Gaber E. Eldesoky reviewed, edited and supervised the work.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Ethics Approval

This is a theoretical analysis, so no ethical authorization is required.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Dwivedi, D.K., Lohia, P. et al. Highly Sensitive Plasmonic Biosensor for the Detection of Chikungunya Virus Employing TiO2 and BP/WS2 Heterostructure. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02242-3

Keywords

Navigation