Skip to main content
Log in

Dynamic instabilities under isotropic drained compression of idealized granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The compressibility behaviour of loose and contracting granular assemblies, normally consolidated and overconsolidated, under isotropic drained compression is investigated in this paper. Short cylindrical samples of water-saturated monodisperse glass beads, initially assembled in loose state by moist-tamping technique, are isotropically compressed in a classical axisymmetric triaxial machine. Very loose glass bead samples experience numerous unexpected events, sometimes cascading, under undetermined triggered effective isotropic stress in loading and in unloading, while the classical compressibility behaviour of granular material is recovered once these events ignored. Each event, resembling the stick–slip instability during shear in triaxial compression, is characterized by a transient dynamic phase I with very fast drop of effective isotropic stress \(\sigma ^{'}\) due to an excess pore pressure development at nearly constant volume and constant axial strain, followed by a quasi-static phase II with gradual increase in axial \(\varepsilon _\mathrm{a}\) (contraction) and volumetric \(\varepsilon _\mathrm{v}\) (compaction) strain, and a full progressive recovery of \(\sigma ^{'}\) to the previous level before event. A short-lived liquefaction with null \(\sigma ^{'}\) measured in the first phase I results in a local collapse state. Collapse events also happen on unsaturated moist and dry states. Rare events even occur during the unloading of subsequent isotropic compression cycles. The effects of triggered isotropic stress are discussed, the instability characteristics measured, the comparison with stick–slip instability made and the hypothesis of micro-structural instability with local collapse of contact networks and rapid micro-structural rearrangement argued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. www.Cvp-abrasif-broyage.com.

  2. www.sigmund-lindner.com.

References

  1. Adjemian F (2003) Stick–slip et transition de broutage dans les essais triaxiaux sur billes de verre. Thèse de doctorat, Ecole Centrale Paris

  2. Adjemian F, Evesque P (2004) Experimental study of stick–slip behaviour. Int J Numer Anal Methods Geomech 28(6):501–530

    Article  Google Scholar 

  3. Agnolin I, Roux J-N (2007) Internal states of model isotropic granular packings. II. Compression and pressure cycles. Phys Rev E 76(6):061303

    Article  MathSciNet  Google Scholar 

  4. Aharonov E, Sparks D (2004) Stick-slip motion in simulated granular layers. J Geophys Res 109:B09306

    Article  Google Scholar 

  5. Alshibli KA, Roussel LE (2006) Experimental investigation of stick–slip behaviour in granular materials. Int J Numer Anal Methods Geomech 30(14):1391–1407

    Article  Google Scholar 

  6. Anthony JL, Marone C (2005) Influence of particle characteristics on granular friction. J Geophys Res 110:B08409

    Article  Google Scholar 

  7. Behringer RP, Howell D, Veje C (1999) Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys Rev Lett 82(26):5241–5244

    Article  Google Scholar 

  8. Bjerrum L, Krimgstad S, Kummeneje O (1961) The shear strength of a fine sand. In: Proceedings of 5th international conference on soil mechanics and foundation engineering, vol 1, pp 29–37

  9. Çabalar AF, Clayton CRI (2010) Some observations of the effects of pore fluids on the triaxial behaviour of a sand. Granul Matter 12(1):87–95

    Article  Google Scholar 

  10. Cain R, Page N, Biggs S (2001) Microscopic and macroscopic aspects of stick–slip motion in granular shear. Phys Rev E 64(1):(016413)1–8

  11. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  12. Daouadji A, Darve F, Al Gali H, Hicher PY, Laouafa F, Lignon S, Nicot F, Nova R, Pinheiro M, Prunier F, Sibille L, Wan R (2011) Diffuse failure in geomaterials: experiments, theory and modelling. Int J Numer Anal Methods Geomech 35(16):1731–1773

    Article  Google Scholar 

  13. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):527–546

    Article  Google Scholar 

  14. Dieterich JH (1979) Modeling of rock friction 1. Experimental results and constitutive equations. J Geophys Res 84(B5):2161–2168

    Article  Google Scholar 

  15. Doanh T, Abdelmoula N, Nguyên TTT, Hans S, Boutin C, Le Bot A (2016) Unexpected liquefaction under isotropic consolidation of idealized granular materials. Granul Matter 18(3):67

    Article  Google Scholar 

  16. Doanh T, Hoang MT, Roux J-N, Dequeker C (2013) Stick–slip behaviour of model granular materials in drained triaxial compression. Granul Matter 15(1):1–23

    Article  Google Scholar 

  17. Doanh T, Ibraim E (2000) Minimum undrained strength of Hostun RF. Géotechnique 50(4):377–392

    Article  Google Scholar 

  18. Doanh T, Le Bot A, Abdelmoula N, Gribaa L, Hans S, Boutin C (2016) Unexpected collapses during isotropic consolidation of model granular materials. Comptes Rendus Mécanique 344(2):66–77

    Article  Google Scholar 

  19. Doanh T, Le Bot A, Abdelmoula N, Hans S, Boutin C (2014) Liquefaction of immersed granular media under isotropic compression. Europhys Lett 108(2):24004

    Article  Google Scholar 

  20. Donescu S, Munteanu L, Mosneguţu V (2011) On the acoustics of the stick–slip phenomenon. Rev Roum Sci Tech Méc Appl 56(2):105–111

    Google Scholar 

  21. Drescher A, de Jong G De Josselin (1972) Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 20:337–351

    Article  Google Scholar 

  22. Eckersley D (1990) Instrumented laboratory flowslides. Géotechnique 40(3):489–502

    Article  Google Scholar 

  23. Estrada N, Taboada A, Radjaï F (2008) Shear strength and force transmission in granular media with rolling resistance. Phys Rev E 78:021301

    Article  Google Scholar 

  24. Finge Z, Doanh T, Dubujet Ph (2006) Undrained anisotropy of Hostun RF loose sand: new experimental hints. Can Geotech J 43(11):1195–1212

    Article  Google Scholar 

  25. Frost JD, Jang DJ (2000) Evolution of sand microstructure during shear. J Geotech Geoenviron Eng 126(2):116–130

    Article  Google Scholar 

  26. Géminard JC, Losert W, Gollub JP (1999) Frictional mechanics of wet granular material. Phys Rev E 59(5):5881–5890

    Article  Google Scholar 

  27. Goren L, Aharonov E, Sparks D, Toussaint R (2010) Pore pressure evolution in deforming granular material: a general formulation and the infinitely stiff approximation. J Geophys Res 115:B09216

  28. Goren L, Aharonov E, Sparks D, Toussaint R (2011) The mechanical coupling of fluid-filled granular material under shear. Pure Appl Geophys 168(12):2289–2323

    Article  Google Scholar 

  29. Gudehus G (2010) Physical soil mechanics. Springer, Berlin

    Google Scholar 

  30. Halasz Z, Kun F (2009) Fiber bundle model with stick–slip dynamics. Phys Rev E 80(2):027,102

    Article  Google Scholar 

  31. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray \(\mu \)CT and volumetric digital image correlation. Géotechnique 60(5):315–322

    Article  Google Scholar 

  32. Heslot F, Baumberger T, Perrin B, Caroli B, Caroli C (1994) Creep, stick–slip, and dry-friction dynamics: experiments and a heuristic model. Phys Rev E 49(6):4973–4988

    Article  Google Scholar 

  33. Iverson RM, LaHusen RG (1989) Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246(4931):796–799

    Article  Google Scholar 

  34. Kim MS (1995) Etude expérimentale du comportement mécanique des matériaux granulaires sous forte contrainte. Thèse de doctorat, Ecole Centrale Paris

  35. Kumar N, Luding S (2016) Memory of jamming—multiscale flow in soft and granular matter. Granul Matter 18(3):58

    Article  Google Scholar 

  36. Ladd RS (1978) Preparing test specimens using undercompaction. Geotech Test J 1(1):16–23

    Article  Google Scholar 

  37. Lade PV, Duncan JM (1973) Cubical triaxial tests on cohesionless soil. J Soil Mech Found ASCE 99(10):793–812

    Google Scholar 

  38. Lagioia R, Nova R (1995) An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique 45(4):633–648

    Article  Google Scholar 

  39. Liu CH, Nagel SR (1993) Sound in a granular material: disorder and nonlinearity. Phys Rev B 48(21):15,646–15,650

    Article  Google Scholar 

  40. Liu CH, Nagel SR, Schecter DA, Coppersmith SN, Majmudar S (1995) Force fluctuations in bead packs. Science 269(5223):513–515

    Article  Google Scholar 

  41. Mair K, Frye KM, Marone C (2002) Influence of grain characteristics on the friction of granular shear zones. J Geophys Res 107(B10):2219

    Article  Google Scholar 

  42. Marone C (1998) Laboratory-derived friction laws and their application to seismic faulting. Annu Rev Earth Planet Sci 26:643–696

    Article  Google Scholar 

  43. Mašín D (2012) Asymptotic behaviour of granular materials. Granul Matter 14(6):759–774

    Article  Google Scholar 

  44. Mcdowell GR, de Bono JP (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11):895–908

    Article  Google Scholar 

  45. Mcdowell GR, De Bono JP, Yue P, Yu H-S (2013) Micro mechanics of isotropic normal compression. Géotech Lett 3(4):166–172

    Article  Google Scholar 

  46. Michlmayr G, Cohen D, Or D (2012) Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media—a review. Earth Sci Rev 112(3):97–114

    Article  Google Scholar 

  47. Michlmayr G, Or D (2014) Mechanisms for acoustic emissions generation during granular shearing. Granul Matter 16(5):627–640

    Article  Google Scholar 

  48. Nasuno S, Kudrolli A, Bak A, Gollub JP (1998) Time-resolved studies of stick–slip friction in sheared granular layers. Phys Rev E 58(2):2161–2171

    Article  Google Scholar 

  49. Nasuno S, Kudrolli A, Gollub JP (1997) Friction in granular layers: hysteresis and precursors. Phys Rev Lett 79(5):949–952

    Article  Google Scholar 

  50. Oda M, Iwashita K (1999) Mechanics of granular materials: an introduction. CRC Press, Boca Raton

    Google Scholar 

  51. O’Sullivan C (2011) Particulate discrete element modelling. Spon Press, Boca Raton

    Google Scholar 

  52. O’Sullivan C, Cui L (2009) Micromechanics of granular material response during load reversals: combined DEM and experimental study. Powder Technol 193(3):289–302

    Article  Google Scholar 

  53. Patitsas AJ (2010) Squeal vibrations, glass sounds, and the stick–slip effect. Can J Phys 88(11):863–876

    Article  Google Scholar 

  54. Peña AA, Lizcano A, Alonso-Marroquin F, Herrmann HJ (2008) Biaxial test simulations using a packing of polygonal particles. Int J Numer Anal Methods Geomech 32(2):143–160

    Article  MATH  Google Scholar 

  55. Persson BNJ (1998) Sliding friction. Springer, Berlin

    Book  Google Scholar 

  56. Radjaï F, Roux S (2004) Contact dynamics study of 2D granular media: critical states and relevant internal variables. In: Hinrichsen H, Wolf DE (eds) The physics of granular media. Wiley-VCH, Berlin, pp 165–187

    Google Scholar 

  57. Radjaï F, Dubois F (2011) Discrete numerical modeling of granular materials. Wiley, New York

    Google Scholar 

  58. Radjai F, Evesque P, Bideau D, Roux S (1995) Stick-slip dynamics of a one-dimensional array of particles. Phys Rev E 52(5):5555–5564

    Article  Google Scholar 

  59. Ramos AM, Andrade JE, Lizcano A (2012) Modelling diffuse instabilities in sands under drained conditions. Géotechnique 62(4):471–478

    Article  Google Scholar 

  60. Roussel LE (2003) Experimental investigation of stick-slip behaviour in granular materials. Louisiana State University, Master of science in civil engineering

    Google Scholar 

  61. Ruina A (1983) Slip instability and state variable friction law. J Geophys Res 88(B12):10,359–10,370

    Article  Google Scholar 

  62. Sitharam TG, Vinod JS (2009) Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations. Granul Matter 11(1):33–42

    Article  MATH  Google Scholar 

  63. Skempton AW, Taylor RN (1954) The pore pressure coefficients A and B. Géotechnique 4(4):143–147

    Article  Google Scholar 

  64. Skopek P, Morgenstern NR, Robertson PK, Sego DC (1994) Collapse of dry sand. Can Geotech J 31(6):1008–1014

    Article  Google Scholar 

  65. Suiker ASJ, Fleck NA (2004) Frictional collapse of granular assemblies. ASME J Appl Mech 71:350–358

    Article  MATH  Google Scholar 

  66. Terzaghi K, Peck RP, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York

    Google Scholar 

  67. Thompson P, Grest G (1991) Granular flow: friction and dilatancy transition. Phys Rev Lett 67(13):1751–1754

    Article  Google Scholar 

  68. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53

    Article  Google Scholar 

  69. Tong L, DEM Wang YH (2015) Simulations of shear modulus and damping ratio of sand with emphasis on the effects of particle number, particle shape, and aging. Acta Geotech 10(1):117–130

    Article  Google Scholar 

  70. Tordesillas A, Hilton JE, Tobin ST (2014) Stick–slip and force chain evolution in a granular bed in response to a grain intruder. Phys Rev E 89:042207

    Article  Google Scholar 

  71. Trivedi A, Sud VK (2004) Collapse behavior of coal ash. J Geotech Geoenviron Eng 130(4):403–415

    Article  Google Scholar 

  72. Tsai J-C, Voth GA, Gollub JP (2003) Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys Rev Lett 91(6):064301

    Article  Google Scholar 

  73. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91

    Article  Google Scholar 

  74. Wenzl J, Seto R, Roth M, Butt H-J, Auernhammer GK (2013) Measurement of rotation of individual spherical particles in cohesive granulates. Granul Matter 15(4):391–400

    Article  Google Scholar 

  75. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  76. Wood DM (1994) General report: evaluation of material properties. In: Miura S, Shibuya S, Mitachi T (eds) Proceedings of pre-failure deformation of geomaterials, Sapporo, Japan, vol 2, Balkema, Rotterdam, pp 1179–1199

  77. Wood DM, Lesniewska D (2011) Stresses in granular materials. Granul Matter 13(4):395–415

    Article  Google Scholar 

  78. Yang J, Wei LM (2012) Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 62(12):1111–1125

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Scheibert and J.-N. Roux, for very fruitful discussions; C. Dano for providing \(e_\mathrm{min}\), \(e_\mathrm{max}\) and the SEM figures; J. Blanc-Gonnet, S. Cointet, L. Giraud, M. Guibert, D. Roux, F. Sallet and S. Zara for technical supports; and two anonymous reviewers for helpful suggestions making this work synthetic and attractive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Doanh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (ZIP 14 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doanh, T., Abdelmoula, N., Gribaa, L. et al. Dynamic instabilities under isotropic drained compression of idealized granular materials. Acta Geotech. 12, 657–676 (2017). https://doi.org/10.1007/s11440-016-0514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0514-0

Keywords

Navigation