Skip to main content
Log in

Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance

  • Article
  • Environmental Science & Technology
  • Published:
Chinese Science Bulletin

Abstract

A thiourea precursor was employed to synthesize mesoporous carbon nitride (C3N4) by a thermal polycondensation process with high surface area SiO2 and nanosphere SiO2 as two types of hard templates. The resultant mesoporous C3N4 samples have high surface areas (105–112 m2/g) and mesopores with narrow sizes distribution (9.3 nm). Photocatalytic performance was evaluated by removal of NO in air under visible light irradiation. The results showed that mesoporous C3N4 samples exhibited significantly improved photocatalytic activity in comparison with bulk C3N4, which also exceeded that of N-doped TiO2 and C-doped TiO2. The activity enhancement can be ascribed to the synergistic effects of large surface area and pore volume, enhanced light-harvesting ability, increased redox potential, and reduced recombination of charge carriers. In addition to the high activity, the mesoporous C3N4 samples also showed high photochemical stability. The mesoporous C3N4 photocatalysts with enhanced and durable activity could provide a new efficient material for environmental pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  Google Scholar 

  2. Rehman S, Ullah R, Butt AM et al (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569

    Article  Google Scholar 

  3. Mo JH, Zhang YP, Xu QJ et al (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  Google Scholar 

  4. Liu G, Wang L, Yang H et al (2010) Titania-based photocatalysts: crystal growth, doping and heterostructuring. J Mater Chem 20:831–843

    Article  Google Scholar 

  5. Xiang QJ, Yu JG, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  Google Scholar 

  6. Tong H, Ouyang S, Bi Y et al (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  Google Scholar 

  7. Dong F, Guo S, Wang HQ et al (2011) Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by green synthetic approach. J Phys Chem C 115:13285–13292

    Article  Google Scholar 

  8. Dong F, Sun YJ, Fu M et al (2012) Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst. Langmuir 28:766–773

    Article  Google Scholar 

  9. Dong F, Sun YJ, Ho WK et al (2012) Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Trans 41:8270–8284

    Article  Google Scholar 

  10. Wang P, Huang BB, Dai Y et al (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825

    Article  Google Scholar 

  11. Zhang Q, He YQ, Chen XG et al (2011) Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin Sci Bull 56:331–339

    Article  Google Scholar 

  12. Lin HL, Cao J, Luo BD et al (2012) Visible-light photocatalytic activity and mechanism of novel AgBr/BiOBr prepared by deposition-precipitation. Chin Sci Bull 57:2901–2907

    Article  Google Scholar 

  13. Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  14. Wang F, Ng WKH, Yu JC et al (2012) Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl Catal B 111:409–414

    Article  Google Scholar 

  15. Liu G, Niu P, Yin LC et al (2012) α-Sulfur crystals as a visible-light-active photocatalyst. J Am Chem Soc 134:9070–9073

    Article  Google Scholar 

  16. Holst JR, Gillan EG (2008) From triazines to heptazines: deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. J Am Chem Soc 130:7373–7379

    Article  Google Scholar 

  17. Zhang J, Sun J, Maeda K et al (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4:675–678

    Article  Google Scholar 

  18. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  Google Scholar 

  19. Zhang JS, Chen XF, Takanabe K et al (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49:441–444

    Article  Google Scholar 

  20. Bojdys MJ, Mller J, Antonietti M et al (2008) Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem Eur J 14:8177–8182

    Article  Google Scholar 

  21. Yan HJ, Chen Y, Xu SM (2012) Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int J Hydrogen Energy 37:125–133

    Article  Google Scholar 

  22. Dong F, Wu LW, Sun YJ et al (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalyst. J Mater Chem 21:15171–15174

    Article  Google Scholar 

  23. Dong F, Sun YJ, Wu LW et al (2012) Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal Sci Technol 2:1332–1335

    Article  Google Scholar 

  24. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogenous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89

    Article  Google Scholar 

  25. Zheng Y, Liu J, Liang J et al (2012) Graphitic carbon nitride materials-controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731

    Article  Google Scholar 

  26. Cui Y, Zhang J, Zhang G et al (2011) Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem 21:13032–13039

    Article  Google Scholar 

  27. Yu JG, Su Y, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro/mesoporous titania. Adv Funct Mater 17:1984–1990

    Article  Google Scholar 

  28. Zhang C, Zhu YF (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545

    Article  Google Scholar 

  29. Dong F, Sun YJ, Fu M et al (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219–220:26–34

    Article  Google Scholar 

  30. Rengaraj S, Venkataraj S, Tai C et al (2011) Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir 27:5534–5541

    Article  Google Scholar 

  31. Zhang N, Ouyang S, Li P et al (2011) Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chem Commun 47:2041–2043

    Article  Google Scholar 

  32. Wu ZB, Dong F, Zhao WR et al (2008) Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. J Hazard Mater 157:57–63

    Article  Google Scholar 

  33. Dong F, Wang HQ, Wu ZB (2009) One-step, “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J Phys Chem C 113:16717–16723

    Article  Google Scholar 

  34. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  35. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  36. Zhang GG, Zhang JH, Zhang MW et al (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083–8091

    Article  Google Scholar 

  37. Yan HJ (2012) Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun 48:3430–3432

    Article  Google Scholar 

  38. Li Z, Zhou Y, Xue G et al (2012) Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. J Mater Chem 22:14341–14345

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51108487), the Natural Science Foundation Project of CQ CSTC (cstc2013jcyjA20018), the Science and Technology Project from Chongqing Education Commission (KJ130725), the Innovative Research Team Development Program in University of Chongqing (KJTD201314), and the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of Higher Education (LZJ1204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Dong or Zhongbiao Wu.

About this article

Cite this article

Dong, F., Li, Y., Ho, W. et al. Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance. Chin. Sci. Bull. 59, 688–698 (2014). https://doi.org/10.1007/s11434-013-0095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0095-3

Keywords

Navigation