Skip to main content
Log in

Relative humidity reconstruction for northwestern China’s Altay Mountains using tree-ring δ18O

  • Article
  • Geography
  • Published:
Chinese Science Bulletin

Abstract

Relative humidity is an important factor in water and water vapor feedback cycles. In this study, we established a 222-year annual tree-ring δ18O chronology for Siberian larch (Larix sibirica Ldb.) from the Altay Mountains in northwestern China. Climate response analyses revealed that the relative humidity was the primary factor limiting tree-ring δ18O fractionation. Based on our analysis, tree-ring δ18O can be used to reconstruct the July–August relative humidity based on both a reasonable mechanism of tree-ring δ18O fractionation and a statistically significant regression model. We used this model to reconstruct variations in the July–August relative humidity, and the model explained 47.4 % of the total variation in the measured relative humidity data from 1961 to 2011. The relative humidity in the study area increased from 1900 to the 1990s and decreased thereafter. Two regime-shift dry periods were detected during the study period (one from 1817 to 1830 and the other from 2004 to 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sherwood SC, Ingram W, Tsushima Y et al (2010) Relative humidity changes in a warmer climate. J Geophys Res 115(D9):D09104. doi:10.1029/2009JD012585

    Article  Google Scholar 

  2. Zuo HC, Li DL, Hu YQ et al (2005) Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China. Chin Sci Bull 50:1235–1241

    Google Scholar 

  3. Rawson H, Begg J, Woodward R (1977) The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134:5–10

    Article  Google Scholar 

  4. Osonubi O, Davies W (1980) The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity. Oecologia 46:1–6

    Article  Google Scholar 

  5. Hovenden MJ, Vander Schoor JK, Osanai Y (2012) Relative humidity has dramatic impacts on leaf morphology but little effect on stomatal index or density in Nothofagus cunninghamii (Nothofagaceae). Aust J Bot 60:700–706

    Article  Google Scholar 

  6. Hoffman GJ, Rawlins SL, Garber MJ et al (1971) Water relations and growth of cotton as influenced by salinity and relative humidity. Agron J 63:822–826

    Article  Google Scholar 

  7. Spomer LA, Tibbitts TW (1997) Humidity. In: Langhans RW, Tibbitts TW (eds) Plant growth chamber handbook. Iowa State University, Ames, pp 43–64

    Google Scholar 

  8. Krug BA, Whipker BE, McCall I et al (2013) Elevated relative humidity increases the incidence of distorted growth and boron deficiency in bedding plant plugs. HortScience 48:311–313

    Google Scholar 

  9. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35

    Article  Google Scholar 

  10. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. doi:10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  11. Dongmann G, Nürnberg HW, Förstel H et al (1974) On the enrichment of H 182 O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52

    Article  Google Scholar 

  12. Liu Y, Cai QF, Liu WG et al (2008) Monsoon precipitation variation recorded by tree-ring δ18O in arid northwest China since AD 1878. Chem Geol 252:56–61

    Article  Google Scholar 

  13. Sano M, Ramesh R, Sheshshayee M et al (2012) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene 22:809–817

    Article  Google Scholar 

  14. Gessler A, Löw M, Heerdt C et al (2009) Within-canopy and ozone fumigation effects on δ13C and Δ 18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters. Tree Physiol 29:1349–1365

    Article  Google Scholar 

  15. Waterhouse JS, Switsur VR, Barker AC et al (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201:421–430

    Article  Google Scholar 

  16. Sternberg LSL (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181:553–562

    Article  Google Scholar 

  17. Shu Y, Feng XH, Gazis C et al (2005) Relative humidity recorded in tree rings: a study along a precipitation gradient in the Olympic Mountains, Washington, USA. Geochim Cosmochim Acta 69:791–799

    Article  Google Scholar 

  18. Tsuji H, Nakatsuka T, Takagi K (2006) δ18O of tree-ring cellulose in two species (spruce and oak) as proxies of precipitation amount and relative humidity in northern Japan. Chem Geol 231:67–76

    Article  Google Scholar 

  19. Yapp CJ, Epstein S (1982) A reexamination of cellulose carbon-bound hydrogen δD measurements and some factors affecting plant-water D/H relationships. Geochim Cosmochim Acta 46:955–965

    Article  Google Scholar 

  20. Edwards TWD, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Appl Geochem 1:715–723

    Article  Google Scholar 

  21. Wright WE, Leavitt SW (2006) Boundary layer humidity reconstruction for a semiarid location from tree ring cellulose δ18O. J Geophys Res 111:D18105. doi:10.1029/2005jd006806

    Article  Google Scholar 

  22. Tsuji H, Nakatsuka T, Yamazaki K et al (2008) Summer relative humidity in northern Japan inferred from δ18O values of the tree ring in (1776–2002 A.D.): influence of the paleoclimate indices of atmospheric circulation. J Geophys Res 113(D18):D18103. doi:10.1029/2007jd009080

    Article  Google Scholar 

  23. Wang WZ, Liu XH, Xu GB et al (2013) Moisture variations over the past millennium characterized by Qaidam Basin tree-ring δ18O. Chin Sci Bull. doi:10.1007/s11434-013-5913-0

    Google Scholar 

  24. Khaliq MN, Ouarda TBMJ (2007) On the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687

    Article  Google Scholar 

  25. Abaimov AP (2010) Geographical distribution and genetics of Siberian larch species. In: Osawa A, Zyryanova OA, Matsuura Y et al (eds) Permafrost ecosystems. Springer, Amsterdam, pp 41–58

    Chapter  Google Scholar 

  26. Zhou WS, Li JF, Zhang ZJ (1989) Some problems in developing the tree-ring chronologies in the south slope of the Altay mountain (in Chinese). In: Li JF, Zhagn ZJ, Yuan YJ (eds) Study of tree-ring climatology and tree-ring hydrology in Xinjiang. Meteorological Press, Beijing, pp 9–17

    Google Scholar 

  27. Li JF, Yuan YJ (1989) Effect of snow on the growth of tree-ring (in Chinese). In: Li JF, Zhagn ZJ, Yuan YJ (eds) Study of tree-ring climatology and tree-ring hydrology in Xinjiang. Meteorological Press, Beijing, pp 87–91

    Google Scholar 

  28. Stokes MA, Smiley TL (1968) An introduction of tree-ring dating. University of Chicago, Chicago

    Google Scholar 

  29. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bull 43:69–78

    Google Scholar 

  30. Daux V, Edouard JL, Masson-Delmotte V et al (2011) Can climate variations be inferred from tree-ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue. Earth Planet Sci Lett 309:221–233

    Article  Google Scholar 

  31. Young GHF, Demmler JC, Gunnarson BE et al (2011) Age trends in tree ring growth and isotopic archives: a case study of Pinus sylvestris L. from northwestern Norway. Glob Biogeochem Cycles 25(2):GB2020. doi:10.1029/2010gb003913

    Article  Google Scholar 

  32. Leavitt SW (2008) Tree-ring isotopic pooling without regard to mass: no difference from averaging δ13C values of each tree. Chem Geol 252:52–55

    Article  Google Scholar 

  33. Liu XH, Shao XM, Liang EY et al (2009) Climatic significance of tree-ring δ18O in the Qilian Mountains, northwestern China and its relationship to atmospheric circulation patterns. Chem Geol 268:147–154

    Article  Google Scholar 

  34. Loader NJ, Robertson I, Switsur VR et al (1997) An improved technique for the batch processing of small whole wood samples to α-cellulose. Chem Geol 136:313–317

    Article  Google Scholar 

  35. Liu XH, Liu Y, Xu GB et al (2010) Pretreatment of the tree-ring samples for stable isotope analysis. J Glaciol Geocryol 32:1242–1250 (in Chinese)

    Google Scholar 

  36. Laumer W, Andreu L, Helle G et al (2009) A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Commun Mass Spec 23:1934–1940

    Article  Google Scholar 

  37. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University, Cambridge

    Book  Google Scholar 

  38. Wigley T, Briffa K, Jones P (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  39. Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26:1589–1600

    Article  Google Scholar 

  40. Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  41. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  42. Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian monsoon failure and megadrought during the last millennium. Science 328:486–489

    Article  Google Scholar 

  43. Fang KY, Davi N, Gou XH et al (2010) Spatial drought reconstructions for central High Asia based on tree rings. Clim Dynam 35:941–951

    Article  Google Scholar 

  44. Fang KY, Gou XH, Chen FH et al (2011) Large-scale precipitation variability over northwest China inferred from tree rings. J Clim 24:3457–3468

    Article  Google Scholar 

  45. Sidorova OV, Siegwolf RTW, Saurer M et al (2010) Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob Change Biol 16:1003–1018

    Article  Google Scholar 

  46. Sidorova O, Saurer M, Myglan V et al (2012) A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Clim Dyn 38:175–188

    Article  Google Scholar 

  47. Robertson I, Waterhouse JS, Barker AC et al (2001) Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet Sci Lett 191:21–31

    Article  Google Scholar 

  48. Rodionov SN (2006) Use of prewhitening in climate regime shift detection. Geophys Res Lett 33:L12707. doi:10.1029/2006GL025904

    Article  Google Scholar 

  49. Li JB, Gou XH, Cook ER et al (2006) Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophys Res Lett 33:L07715. doi:10.1029/2006gl025803

    Google Scholar 

  50. Davi N, Jacoby G, Fang KY et al (2010) Reconstructing drought variability for Mongolia based on a large-scale tree ring network: 1520–1993. J Geophys Res 115:D22103. doi:10.1029/2010JD013907

    Article  Google Scholar 

  51. Shi CM, Daux V, Zhang QB et al (2012) Reconstruction of southeast Tibetan plateau summer climate using tree ring δ18O: moisture variability over the past two centuries. Clim Past 8:205–213

    Article  Google Scholar 

  52. Li JB, Cook E, D’arrigo R et al (2009) Moisture variability across China and Mongolia: 1951–2005. Clim Dyn 32:1173–1186

    Article  Google Scholar 

  53. Fang KY, Gou XH, Chen FH et al (2009) Drought variations in the eastern part of northwest China over the past two centuries: evidence from tree rings. Clim Res 38:129–135

    Article  Google Scholar 

  54. Liang EY, Shao XM, Liu HY et al (2007) Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia. Chin Sci Bull 52:2715–2721

    Article  Google Scholar 

  55. Zou XK, Zhai PM, Zhang Q (2005) Variations in droughts over China: 1951–2003. Geophys Res Lett 32:L04707. doi:10.1029/2004GL021853

    Google Scholar 

  56. Treydte KS, Schleser GH, Helle G et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    Article  Google Scholar 

  57. Shi YF, Shen YP, Kang ES et al (2007) Recent and future climate change in northwest China. Clim Change 80:379–393

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers and editors for their constructive comments and suggestions. This work was supported by the Global Change Research Program of China (2010CB951401), the National Natural Science Foundation of China (41171167), the Project for Incubation of Specialists in Glaciology and Geocryology of the National Natural Science Foundation of China (J0930003/J0109), the China Desert Meteorological Science Research Foundation (Sqj2011013 and Sqj2009001), the Chinese Academy Science Special Grant for Postgraduate Research, Innovation and Practice, and the Chinese Academy of Sciences Interdisciplinary Innovation Team Project (29Y329B91).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Liu.

About this article

Cite this article

Xu, G., Liu, X., Qin, D. et al. Relative humidity reconstruction for northwestern China’s Altay Mountains using tree-ring δ18O. Chin. Sci. Bull. 59, 190–200 (2014). https://doi.org/10.1007/s11434-013-0055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0055-y

Keywords

Navigation