Skip to main content
Log in

Microbial degradation of various types of dissolved organic matter in aquatic ecosystems and its influencing factors

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Interactions between chemodiverse dissolved organic matter (DOM) and biodiverse microbes are governed by a myriad of intrinsic and extrinsic factors which are not well understood. Here, we update and bridge the gap of this interdisciplinary theme comprehensively. At an ecosystem level, aquatic ecosystems dominated by algae-sourced DOM (e.g., eutrophic lake or coastal upwelling areas) harbor more biolabile DOM, such as directly assimilable monomers and readily hydrolysable biopolymers. However, other ecosystems prevailed by DOM supply from soil and vascular plants (e.g., river or wetland) have more biorefractory DOM, such as low molecular weight (LMW) residue of aliphatic C skeletons and geopolymers. A variety of heterotrophic bacteria, archaea, fungi, phagotrophic protists, and even photoautotrophic phytoplankton shows genomic and/or culturing experimental evidence of being able to process a diverse type of organics. The various biodegradable organics have different chemical structures and chemical bonds such as carbohydrates, amino acids, proteins, lignins, lipids, carboxylic acids, humic acids, hydrocarbons, and nanoplastics. Meanwhile, bio-production of metabolism intermediates and/or biorefractory organics (e.g., carboxyl-rich alicyclic molecules, CRAM) is observed despite general decay of bulk dissolved organic carbon (DOC) during bioassay experiments. In particular, emerging evidence shows that archaea contribute significantly to biomass in the marine mesopelagic zone and subsurface environments and their abundance often increases with depth in sediments. Furthermore, not only intrinsic factors (e.g., DOM composition and structure), but also extrinsic ones (e.g., sunlight and dissolved oxygen) play important roles in interplays between DOM and microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali P, Shah A A, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F. 2020. A glacier bacterium produces high yield of cryoprotective exopolysaccharide. Front Microbiol, 10, https://doi.org/10.3389/fmicb.2019.03096

  • Al-Nasrawi H. 2012. Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J Bioremed Biodegrad, 3: 147

    Google Scholar 

  • Aluwihare L I, Repeta D J. 1999. A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Mar Ecol Prog Ser, 186: 105–117

    Article  Google Scholar 

  • Aluwihare L I, Repeta D J, Pantoja S, Johnson C G. 2005. Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science, 308: 1007–1010

    Article  Google Scholar 

  • Amaral V, Graeber D, Calliari D, Alonso C. 2016. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol Oceanogr, 61: 906–918

    Article  Google Scholar 

  • Amon R M W, Benner R. 1994. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature, 369: 549–552

    Article  Google Scholar 

  • Amon R M W, Benner R. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr, 41: 41–51

    Article  Google Scholar 

  • Ankrah N Y D, May A L, Middleton J L, Jones D R, Hadden M K, Gooding J R, LeCleir G R, Wilhelm S W, Campagna S R, Buchan A. 2014. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J, 8: 1089–1100

    Article  Google Scholar 

  • Antony R, Willoughby A S, Grannas A M, Catanzano V, Sleighter R L, Thamban M, Hatcher P G. 2018. Photo-biochemical transformation of dissolved organic matter on the surface of the coastal East Antarctic ice sheet. Biogeochemistry, 141: 229–247

    Article  Google Scholar 

  • Arístegui J, Agustí S, Middelburg J J, Duarte C M. 2006. Respiration in the Mesopelagic and Bathypelagic Zones of the Oceans. Oxford: Oxford University Press. 181–205

    Google Scholar 

  • Arnosti C. 2003. 13-microbial extracellular enzymes and their role in dissolved organic matter cycling. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 315–342

    Chapter  Google Scholar 

  • Arnosti C, Wietz M, Brinkhoff T, Hehemann J H, Probandt D, Zeugner L, Amann R. 2021. The biogeochemistry of marine polysaccharides: Sources, inventories, and bacterial drivers of the carbohydrate cycle. Annu Rev Mar Sci, 13: 81–108

    Article  Google Scholar 

  • Azam F. 1998. Microbial control of oceanic carbon flux: The plot thickens. Science, 280: 694–696

    Article  Google Scholar 

  • Azam F, Fenchel T, Field J G, Gray J S, Meyer-Reil L A, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 10: 257–263

    Article  Google Scholar 

  • Azam F, Smith D C, Steward G F, Hagström A. 1994. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb Ecol, 28: 167–179

    Article  Google Scholar 

  • Baltar F, Alvarez-Salgado X A, Arístegui J, Benner R, Hansell D A, Herndl G J, Lønborg C. 2021. What is refractory organic matter in the ocean? Front Mar Sci, 8, https://doi.org/10.3389/fmars.2021.642637

  • Battin T J, Kaplan L A, Findlay S, Hopkinson C S, Marti E, Packman A I, Newbold J D, Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci, 1: 95–100

    Article  Google Scholar 

  • Bayer B, Hansman R L, Bittner M J, Noriega-Ortega B E, Niggemann J, Dittmar T, Herndl G J. 2019. Ammonia-oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environ Microbiol, 21: 4062–4075

    Article  Google Scholar 

  • Benner R, Amon R M W. 2015. The size-reactivity continuum of major bioelements in the ocean. Annu Rev Mar Sci, 7: 185–205

    Article  Google Scholar 

  • Benner R, Biddanda B. 1998. Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnol Oceanogr, 43: 1373–1378

    Article  Google Scholar 

  • Benner R, Kaiser K. 2011. Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter. Biogeochemistry, 102: 209–222

    Article  Google Scholar 

  • Benner R, Pakulski J D, McCarthy M, Hedges J I, Hatcher P G. 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255: 1561–1564

    Article  Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès M C C, Charles T, Chen X, Cocolin L, Eversole K, Corral G H, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin J A, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran G S, Selvin J, Souza R S C, van Overbeek L, Singh B K, Wagner M, Walsh A, Sessitsch A, Schloter M. 2020. Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 8: 103

    Article  Google Scholar 

  • Bergauer K, Fernandez-Guerra A, Garcia J A L, Sprenger R R, Stepanauskas R, Pachiadaki M G, Jensen O N, Herndl G J. 2018. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA, 115: E400

    Article  Google Scholar 

  • Bertrand E M, McCrow J P, Moustafa A, Zheng H, McQuaid J B, Delmont T O, Post A F, Sipler R E, Spackeen J L, Xu K, Bronk D A, Hutchins D A, Allen A E. 2015. Phytoplankton bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci USA, 112: 9938–9943

    Article  Google Scholar 

  • Biddanda B, Benner R. 1997. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr, 42: 506–518

    Article  Google Scholar 

  • Biddanda B, Ogdahl M, Cotner J. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol Oceanogr, 46: 730–739

    Article  Google Scholar 

  • Biersmith A, Benner R. 1998. Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem, 63: 131–144

    Article  Google Scholar 

  • Blough N V, Zepp R G. 1995. Reactive oxygen species in natural waters. In: Foote C S, Valentine J S, Greenberg A, Liebman J F, eds. Active Oxygen in Chemistry. Dordrecht: Springer Netherlands. 280–333

    Chapter  Google Scholar 

  • Bochdansky A B, Clouse M A, Herndl G J. 2017. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J, 11: 362–373

    Article  Google Scholar 

  • Broman E, Asmala E, Carstensen J, Pinhassi J, Dopson M. 2019. Distinct coastal microbiome populations associated with autochthonous- and allochthonous-like dissolved organic matter. Front Microbiol, 10, https://doi.org/10.3389/fmicb.2019.02579

  • Bronk D A. 2002. Chapter 5-Dynamics of DON. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 153–247

    Chapter  Google Scholar 

  • Bugg T D H, Ahmad M, Hardiman E M, Rahmanpour R. 2011. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep, 28: 1883–1896

    Article  Google Scholar 

  • Cai M, Liu Y, Yin X, Zhou Z, Friedrich M W, Richter-Heitmann T, Nimzyk R, Kulkarni A, Wang X, Li W, Pan J, Yang Y, Gu J D, Li M. 2020. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci, 63: 886–897

    Article  Google Scholar 

  • Carlson C A. 2002. Chapter 4-production and removal processes. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press. 91–151

    Chapter  Google Scholar 

  • Carini P, White A E, Campbell E O, Giovannoni S J. 2014. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun, 5: 4346

    Article  Google Scholar 

  • Cavicchioli R, Ripple W J, Timmis K N, Azam F, Bakken L R, Baylis M, Behrenfeld M J, Boetius A, Boyd P W, Classen A T, Crowther T W, Danovaro R, Foreman C M, Huisman J, Hutchins D A, Jansson J K, Karl D M, Koskella B, Mark Welch D B, Martiny J B H, Moran M A, Orphan V J, Reay D S, Remais J V, Rich V I, Singh B K, Stein L Y, Stewart F J, Sullivan M B, van Oppen M J H, Weaver S C, Webb E A, Webster N S. 2019. Scientists’ warning to humanity: Microorganisms and climate change. Nat Rev Microbiol, 17: 569–586

    Article  Google Scholar 

  • Chen J, Li H, Zhang Z, He C, Shi Q, Jiao N, Zhang Y. 2020. DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater. Water Res, 185: 116268

    Article  Google Scholar 

  • Chen M, Hur J. 2015. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review. Water Res, 79: 10–25

    Article  Google Scholar 

  • Chen M, Jaffé R. 2014. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Res, 61: 181–190

    Article  Google Scholar 

  • Chen M, Jaffé R. 2016. Quantitative assessment of photo- and bio-reactivity of chromophoric and fluorescent dissolved organic matter from biomass and soil leachates and from surface waters in a subtropical wetland. Biogeochemistry, 129: 273–289

    Article  Google Scholar 

  • Chen M, Kim J H, Lee Y K, Lee D H, Jin Y K, Hur J. 2021. Subsea permafrost as a potential major source of dissolved organic matter to the East Siberian Arctic Shelf. Sci Total Environ, 777: 146100

    Article  Google Scholar 

  • Chen M, Kim J H, Nam S I, Niessen F, Hong W L, Kang M H, Hur J. 2016. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Sci Rep, 6: 39213

    Article  Google Scholar 

  • Chin Y P, Aiken G, O’Loughlin E. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol, 28: 1853–1858

    Article  Google Scholar 

  • Churchill S A, Harper J P, Churchill P F. 1999. Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol, 65: 549–552

    Article  Google Scholar 

  • Clark L L, Ingall E D, Benner R. 1998. Marine phosphorus is selectively remineralized. Nature, 393: 426

    Article  Google Scholar 

  • Colatriano D, Tran P Q, Guéguen C, Williams W J, Lovejoy C, Walsh D A. 2018. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun Biol, 1: 90

    Article  Google Scholar 

  • Cole J J, Findlay S, Pace M L. 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar Ecol Prog Ser, 43: 1–10

    Article  Google Scholar 

  • Cory R M, Ward C P, Crump B C, Kling G W. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345: 925–928

    Article  Google Scholar 

  • Cory R M, Kling G W. 2018. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol Oceanogr Lett, 3: 102–116

    Article  Google Scholar 

  • Cottrell M T, Kirchman D L. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol, 66: 1692–1697

    Article  Google Scholar 

  • Covert J S, Moran M A. 2001. Molecular characterization of estuarine bacterial communities that use high- and low-molecular weight fractions of dissolved organic carbon. Aquat Microb Ecol, 25: 127–139

    Article  Google Scholar 

  • Cunliffe M, Hollingsworth A, Bain C, Sharma V, Taylor J D. 2017. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol, 30: 135–138

    Article  Google Scholar 

  • Dang H, Jiao N. 2014. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences, 11: 3887–3898

    Article  Google Scholar 

  • Dashtban M, Schraft H, Syed T A, Qin W. 2010. Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol, 1: 36–50

    Google Scholar 

  • de Haan H. 1977. Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (the Netherlands). Limnol Oceanogr, 22: 38–44

    Article  Google Scholar 

  • del Giorgio P A, Davis J. 2003. Chapter 17-patterns in dissolved organic matter lability and consumption across aquatic ecosystems. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 399–424

    Chapter  Google Scholar 

  • de Melo M L, Kothawala D N, Bertilsson S, Amaral J H, Forsberg B, Sarmento H. 2020. Linking dissolved organic matter composition and bacterioplankton communities in an Amazon floodplain system. Limnol Oceanogr, 65: 63–76

    Article  Google Scholar 

  • Detmers J, Strauss H, Schulte U, Bergmann A, Knittel K, Kuever J. 2004. FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer. Microb Ecol, 47: 236–242

    Article  Google Scholar 

  • Dittmar T, Lennartz S T, Buck-Wiese H, Hansell D A, Santinelli C, Vanni C, Blasius B, Hehemann J H. 2021. Enigmatic persistence of dissolved organic matter in the ocean. Nat Rev Earth Environ, 2: 570–583

    Article  Google Scholar 

  • Dittmar T, Paeng J. 2009. A heat-induced molecular signature in marine dissolved organic matter. Nat Geosci, 2: 175–179

    Article  Google Scholar 

  • Dittmar T, Stubbins A. 2014. Dissolved organic matter in aquatic systems. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier. 125–156

    Chapter  Google Scholar 

  • Dong X, Greening C, Rattray J E, Chakraborty A, Chuvochina M, Mayumi D, Dolfing J, Li C, Brooks J M, Bernard B B, Groves R A, Lewis I A, Hubert C R J. 2019. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun, 10: 1816

    Article  Google Scholar 

  • Dong X, Rattray J E, Campbell D C, Webb J, Chakraborty A, Adebayo O, Matthews S, Li C, Fowler M, Morrison N M, MacDonald A, Groves R A, Lewis I A, Wang S H, Mayumi D, Greening C, Hubert C R J. 2020. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nat Commun, 11: 5825

    Article  Google Scholar 

  • Dyhrman S T, Benitez-Nelson C R, Orchard E D, Haley S T, Pellechia P J. 2009. A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci, 2: 696–699

    Article  Google Scholar 

  • Ebrahimi A, Schwartzman J, Cordero O X. 2019. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc Natl Acad Sci USA, 116: 23309–23316

    Article  Google Scholar 

  • Farag I F, Biddle J F, Zhao R, Martino A J, House C H, León-Zayas R I. 2020. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME J, 14: 1345–1358

    Article  Google Scholar 

  • Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281: 237–240

    Article  Google Scholar 

  • Findlay S, Sinsabaugh R L. 1999. Unravelling the sources and bioavailability of dissolved organic matter in lotic aquatic ecosystems. Mar Freshwater Res, 50: 781–790

    Google Scholar 

  • Findlay S, Tank J, Dye S, Valett H M, Mulholland P J, McDowell W H, Johnson S L, Hamilton S K, Edmonds J, Dodds W K, Bowden W B. 2002. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol, 43: 55–66

    Article  Google Scholar 

  • Flemming H C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol, 17: 247–260

    Article  Google Scholar 

  • Follett C L, Repeta D J, Rothman D H, Xu L, Santinelli C. 2014. Hidden cycle of dissolved organic carbon in the deep ocean. Proc Natl Acad Sci USA, 111: 16706–16711

    Article  Google Scholar 

  • Foreman C M, Covert J S. 2003. Chapter 14-linkages between dissolved organic matter composition and bacterial community structure. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 343–362

    Chapter  Google Scholar 

  • Fouilland E, Mostajir B. 2010. Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. FEMS Microbiol Ecol, 73: 419–429

    Article  Google Scholar 

  • Gao L, Gu J D. 2021. A new unified conceptual framework involving maintenance energy, metabolism and toxicity for research on degradation of organic pollutants. Int Biodeter Biodegr, 162: 105253

    Article  Google Scholar 

  • Gao H, Zepp R G. 1998. Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environ Sci Technol, 32: 2940–2946

    Article  Google Scholar 

  • Gattuso J P, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst, 29: 405–434

    Article  Google Scholar 

  • Ghosal D, Ghosh S, Dutta T K, Ahn Y. 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front Microbiol, 7, https://doi.org/10.3389/fmicb.2016.01369

  • Giovannoni S J. 2017. SAR11 bacteria: The most abundant plankton in the oceans. Annu Rev Mar Sci, 9: 231–255

    Article  Google Scholar 

  • Glockner F O, Fuchs B M, Amann R. 1999. Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol, 65: 3721–3726

    Article  Google Scholar 

  • Golyshin P N, Chernikova T N, Abraham W R, Lünsdorf H, Timmis K N, Yakimov M M. 2002. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons.. Int J Systatic Evolary Microbiol, 52: 901–911

    Google Scholar 

  • Gómez-Consarnau L, González J M, Coll-Lladó M, Gourdon P, Pascher T, Neutze R, Pedrós-Alió C, Pinhassi J. 2007. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature, 445: 210–213

    Article  Google Scholar 

  • Gonsior M, Peake B M, Cooper W T, Podgorski D C, D’Andrilli J, Dittmar T, Cooper W J. 2011. Characterization of dissolved organic matter across the subtropical convergence off the South Island, New Zealand. Mar Chem, 123: 99–110

    Article  Google Scholar 

  • Gu J D. 2021. Biodegradability of plastics: The issues, recent advances, and future perspectives. Environ Sci Pollut Res, 28: 1278–1282

    Article  Google Scholar 

  • Hammel K E. 1997. Fungal degradation of lignin. In: Cadisch G and Giller K E, eds. Driven by Nature: Plant Litter Quality and Decomposition. Wallingford: CAB International. 33–45

    Google Scholar 

  • Hansell D A. 2013. Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci, 5: 421–445

    Article  Google Scholar 

  • Hansell D A, Carlson C A, Repeta D J, Schlitzer R. 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography, 22: 202–211

    Article  Google Scholar 

  • Harvey G R, Boran D A, Chesal L A, Tokar J M. 1983. The structure of marine fulvic and humic acids. Mar Chem, 12: 119–132

    Article  Google Scholar 

  • Hawkes J A, Rossel P E, Stubbins A, Butterfield D, Connelly D P, Achterberg E P, Koschinsky A, Chavagnac V, Hansen C T, Bach W, Dittmar T. 2015. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat Geosci, 8: 856–860

    Article  Google Scholar 

  • Hedges J I. 1992. Global biogeochemical cycles: Progress and problems. Mar Chem, 39: 67–93

    Article  Google Scholar 

  • Hedges J I, Keil R G. 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar Chem, 49: 81–115

    Article  Google Scholar 

  • Hernes P J, Benner R. 2006. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar Chem, 100: 66–79

    Article  Google Scholar 

  • Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup A, Hedges J I. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta, 70: 2990–3010

    Article  Google Scholar 

  • Hertkorn N, Harir M, Koch B P, Michalke B, Schmitt-Kopplin P. 2013. High-field NMR spectroscopy and FTICR mass spectrometry: Powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences, 10: 1583–1624

    Article  Google Scholar 

  • Herzsprung P, Hertkorn N, Friese K, Schmitt-Kopplin P. 2010. Photochemical degradation of natural organic sulfur compounds (CHOS) from iron-rich mine pit lake pore waters-an initial understanding from evaluation of single-elemental formulae using ultra-high-resolution mass spectrometry. Rapid Commun Mass Spectrom, 24: 2909–2924

    Article  Google Scholar 

  • Holmer M. 2019. Chapter 13-productivity and biogeochemical cycling in seagrass ecosystems. In: Perillo G M E, Wolanski E, Cahoon D R, Hopkinson C S, eds. Coastal Wetlands. Amsterdam: Elsevier. 443–477

    Chapter  Google Scholar 

  • Horvath R S. 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev, 36: 146–155

    Article  Google Scholar 

  • Hou J, Sievert S M, Wang Y, Seewald J S, Natarajan V P, Wang F, Xiao X. 2020. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome, 8: 102

    Article  Google Scholar 

  • Hur J. 2011. Microbial changes in selected operational descriptors of dissolved organic matter from various sources in a watershed. Water Air Soil Pollut, 215: 465–476

    Article  Google Scholar 

  • Hur J, Park M H, Schlautman M A. 2009. Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors. Environ Sci Technol, 43: 2315–2321

    Article  Google Scholar 

  • Imachi H, Nobu M K, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M, Matsui Y, Miyazaki M, Murata K, Saito Y, Sakai S, Song C, Tasumi E, Yamanaka Y, Yamaguchi T, Kamagata Y, Tamaki H, Takai K. 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature, 577: 519–525

    Article  Google Scholar 

  • Inagaki F, Hinrichs K U, Kubo Y, Bowles M W, Heuer V B, Hong W L, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever M A, Lin Y S, Methé B A, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden S A, Elvert M, Glombitza C, Gross D, Harrington G J, Hori T, Li K, Limmer D, Liu C H, Murayama M, Ohkouchi N, Ono S, Park Y S, Phillips S C, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang D T, Yamada Y. 2015. Exploring deep microbial life in coal-bearing sediment down to ∼2.5 km below the ocean floor. Science, 349: 420–424

    Article  Google Scholar 

  • Ivanovsky R N, Lebedeva N V, Keppen O I, Chudnovskaya A V. 2020. Release of photosynthetically fixed carbon as dissolved organic matter by anoxygenic phototrophic bacteria. Microbiology, 89: 28–34

    Article  Google Scholar 

  • Jiao N, Cai R, Zheng Q, Tang K, Liu J, Jiao F, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. 2018. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev, 5: 459–463

    Article  Google Scholar 

  • Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599

    Article  Google Scholar 

  • Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean—Future research directions. Biogeosciences, 11: 5285–5306

    Article  Google Scholar 

  • Jiao N, Zheng Q. 2011. The microbial carbon pump: From genes to ecosystems. Appl Environ Microbiol, 77: 7439–7444

    Article  Google Scholar 

  • Johnson W M, Kido Soule M C, Kujawinski E B. 2016. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME J, 10: 2304–2316

    Article  Google Scholar 

  • Kaiser K, Benner R. 2008. Erratum: Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr, 53: 1192

    Article  Google Scholar 

  • Kaiser K, Benner R. 2009. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Mar Chem, 113: 63–77

    Article  Google Scholar 

  • Kaiser K, Benner R. 2012. Organic matter transformations in the upper mesopelagic zone of the North Pacific: Chemical composition and linkages to microbial community structure. J Geophys Res, 117: C01023

    Google Scholar 

  • Karner M B, DeLong E F, Karl D M. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507–510

    Article  Google Scholar 

  • Kawasaki N, Benner R. 2006. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnol Oceanogr, 51: 2170–2180

    Article  Google Scholar 

  • Kepkay P E, Johnson B D. 1989. Coagulation on bubbles allows microbial respiration of oceanic dissolved organic carbon. Nature, 338: 63–65

    Article  Google Scholar 

  • Kirchman D. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol, 39: 91–100

    Google Scholar 

  • Kirchman D L. 2003. Chapter 9-the contribution of monomers and other low-molecular weight compounds to the flux of dissolved organic material in aquatic ecosystems. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 217–241

    Chapter  Google Scholar 

  • Kirchman D L. 2018. Microbial proteins for organic material degradation in the deep ocean. Proc Natl Acad Sci USA, 115: 445–447

    Article  Google Scholar 

  • Kirchman D L, Suzuki Y, Garside C, Ducklow H W. 1991. High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature, 352: 612–614

    Article  Google Scholar 

  • Kleber M, Bourg I C, Coward E K, Hansel C M, Myneni S C B, Nunan N. 2021. Dynamic interactions at the mineral-organic matter interface. Nat Rev Earth Environ, 2: 402–421

    Article  Google Scholar 

  • Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann J H, Dittmar T, Freese H M, Becher D, Simon M, Wietz M. 2019. Biphasic cellular adaptations and ecological implications of Alteromonasmacleodii degrading a mixture of algal polysaccharides. ISME J, 13: 92–103

    Article  Google Scholar 

  • Koch B P, Kattner G, Witt M, Passow U. 2014. Molecular insights into the microbial formation of marine dissolved organic matter: Recalcitrant or labile? Biogeosciences, 11: 4173–4190

    Article  Google Scholar 

  • Koehler B, Landelius T, Weyhenmeyer G A, Machida N, Tranvik L J. 2014. Sunlight-induced carbon dioxide emissions from inland waters. Glob Biogeochem Cycle, 28: 696–711

    Article  Google Scholar 

  • Koh E Y, Atamna-Ismaeel N, Martin A, Cowie R O M, Beja O, Davy S K, Maas E W, Ryan K G. 2010. Proteorhodopsin-bearing bacteria in Antarctic sea ice. Appl Environ Microbiol, 76: 5918–5925

    Article  Google Scholar 

  • Krause-Jensen D, Duarte C M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nat Geosci, 9: 737–742

    Article  Google Scholar 

  • Kubo K, Lloyd K G F Biddle J, Amann R, Teske A, Knittel K. 2012. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J, 6: 1949–1965

    Article  Google Scholar 

  • Kujawinski E B. 2011. The impact of microbial metabolism on marine dissolved organic matter. In: Carlson C A, Giovannoni S J, eds. Annual Review of Marine Science. 567–599

  • Laane R W P M, Koole L. 1982. The relation between fluorescence and dissolved organic carbon in the Ems-Dollart estuary and the Western Wadden Sea. Netherlands J Sea Res, 15: 217–227

    Article  Google Scholar 

  • Lauro F M, McDougald D, Thomas T, Williams T J, Egan S, Rice S, DeMaere M Z, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk A C, Detter C, Han C S, Brown M V, Robb F T, Kjelleberg S, Cavicchioli R. 2009. The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA, 106: 15527–15533

    Article  Google Scholar 

  • Iavorivska L, Boyer E W, DeWalle D R. 2016. Atmospheric deposition of organic carbon via precipitation. Atmos Environ, 146: 153–163

    Article  Google Scholar 

  • Lazar C S, Baker B J, Seitz K, Hyde A S, Dick G J, Hinrichs K U, Teske A P. 2016. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol, 18: 1200–1211

    Article  Google Scholar 

  • Lechtenfeld O J, Hertkorn N, Shen Y, Witt M, Benner R. 2015. Marine sequestration of carbon in bacterial metabolites. Nat Commun, 6: 6711

    Article  Google Scholar 

  • Lechtenfeld O J, Kattner G, Flerus R, McCallister S L, Schmitt-Kopplin P, Koch B P. 2014. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim Cosmochim Acta, 126: 321–337

    Article  Google Scholar 

  • Li M, Baker B J, Anantharaman K, Jain S, Breier J A, Dick G J. 2015. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun, 6: 8933

    Article  Google Scholar 

  • Li Y, Shahbaz M, Zhu Z, Deng Y, Tong Y, Chen L, Wu J, Ge T. 2021. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol Biochem, 153: 108106

    Article  Google Scholar 

  • Lian J, Zheng X, Zhuo X, Chen Y L, He C, Zheng Q, Lin T H, Sun J, Guo W, Shi Q, Jiao N, Cai R. 2021. Microbial transformation of distinct exogenous substrates into analogous composition of recalcitrant dissolved organic matter. Environ Microbiol, 23: 2389–2403

    Article  Google Scholar 

  • Liang B, Wang L Y, Mbadinga S M, Liu J F, Yang S Z, Gu J D, Mu B Z. 2015. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Expr, 5: 117

    Article  Google Scholar 

  • Lin X, Handley K M, Gilbert J A, Kostka J E. 2015. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME J, 9: 2740–2744

    Article  Google Scholar 

  • Lipp J S, Morono Y, Inagaki F, Hinrichs K U. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454: 991–994

    Article  Google Scholar 

  • Liu Y, Makarova K S, Huang W C, Wolf Y I, Nikolskaya A N, Zhang X, Cai M, Zhang C J, Xu W, Luo Z, Cheng L, Koonin E V, Li M. 2021. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature, 593: 553–557

    Article  Google Scholar 

  • Liu Q, Li W, Liu D, Li L, Li J, Lv N, Liu F, Zhu B, Zhou Y, Xin Y, Dong X. 2021. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin. ISME J, 15: 1844–1857

    Article  Google Scholar 

  • Lloyd K G, Schreiber L, Petersen D G, Kjeldsen K U, Lever M A, Steen A D, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen B B. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496: 215–218

    Article  Google Scholar 

  • Lloyd K G, Steen A D, Ladau J, Yin J, Crosby L. 2018. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems, 3: E00055–00018

    Article  Google Scholar 

  • Logares R, Bråte J, Bertilsson S, Clasen J L, Shalchian-Tabrizi K, Rengefors K. 2009. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol, 17: 414–422

    Article  Google Scholar 

  • Lombard J, López-García P, Moreira D. 2012. The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol, 10: 507–515

    Article  Google Scholar 

  • Lønborg C, Álvarez-Salgado X A, Davidson K, Martínez-García S, Teira E. 2010. Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo. Mar Chem, 119: 121–129

    Article  Google Scholar 

  • Lønborg C, Álvarez-Salgado X A, Letscher R T, Hansell D A. 2018. Large stimulation of recalcitrant dissolved organic carbon degradation by increasing ocean temperatures. Front Mar Sci, 4, https://doi.org/10.3389/fmars.2017.00436

  • Lønborg C, Carreira C, Jickells T, Álvarez-Salgado X A. 2020. Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Front Mar Sci, 7, https://doi.org/10.3389/fmars.2020.00466

  • Lønborg C, Cuevas L A, Reinthaler T, Herndl G J, Gasol J M, Morán X A G, Bates N R, Álvarez-Salgado X A. 2016. Depth dependent relationships between temperature and ocean heterotrophic prokaryotic production. Front Mar Sci, 3, https://doi.org/10.3389/fmars.2016.00090

  • Lønborg C, Davidson K, Álvarez-Salgado X A, Miller A E J. 2009. Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Mar Chem, 113: 219–226

    Article  Google Scholar 

  • Lønborg C, Søndergaard M. 2009. Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuar Coast Shelf Sci, 81: 513–520

    Article  Google Scholar 

  • Mahmoudi N, Beaupré S R, Steen A D, Pearson A. 2017. Sequential bioavailability of sedimentary organic matter to heterotrophic bacteria. Environ Microbiol, 19: 2629–2644

    Article  Google Scholar 

  • Margesin R, Collins T. 2019. Microbial ecology of the cryosphere (glacial and permafrost habitats): Current knowledge. Appl Microbiol Biotechnol, 103: 2537–2549

    Article  Google Scholar 

  • Martinez-Varela A, Casas G, Piña B, Dachs J, Vila-Costa M. 2020. Large enrichment of anthropogenic organic matter degrading bacteria in the sea-surface microlayer at Coastal Livingston Island (Antarctica). Front Microbiol, 11, https://doi.org/10.3389/fmicb.2020.571983

  • McCarren J, Becker J W, Repeta D J, Shi Y, Young C R, Malmstrom R R, Chisholm S W, DeLong E F. 2010. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA, 107: 16420–16427

    Article  Google Scholar 

  • McCarthy M D, Hedges J I, Benner R. 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281: 231–234

    Article  Google Scholar 

  • McDonald N, Achterberg E P, Carlson C A, Gledhill M, Liu S, Matheson-Barker J R, Nelson N B, Parsons R J. 2019. The role of heterotrophic bacteria and archaea in the transformation of lignin in the open ocean. Front Mar Sci, 6, https://doi.org/10.3389/fmars.2019.00743

  • McGenity T J, Folwell B D, McKew B A, Sanni G O. 2012. Marine crude-oil biodegradation: A central role for interspecies interactions. Aquat Biosyst, 8: 10

    Article  Google Scholar 

  • Medeiros P M, Seidel M, Gifford S M, Ballantyne F, Dittmar T, Whitman W B, Moran M A. 2017. Microbially-Mediated Transformations of Estuarine Dissolved Organic Matter. Front Mar Sci, 4, https://doi.org/10.3389/fmars.2017.00069

  • Miles C J, Brezonik P L. 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Environ Sci Technol, 15: 1089–1095

    Article  Google Scholar 

  • Miller W L, Moran M A. 1997. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr, 42: 1317–1324

    Article  Google Scholar 

  • Moran M A, Kujawinski E B, Stubbins A, Fatland R, Aluwihare L I, Buchan A, Crump B C, Dorrestein P C, Dyhrman S T, Hess N J, Howe B, Longnecker K, Medeiros P M, Niggemann J, Obernosterer I, Repeta D J, Waldbauer J R. 2016. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA, 113: 3143–3151

    Article  Google Scholar 

  • Moran M A, Covert J S. 2003. Chapter 10-photochemically mediated linkages between dissolved organic matter and bacterioplankton. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 243–262

    Chapter  Google Scholar 

  • Nagata T. 2008. Organic matter-bacteria interactions in seawater. In: Kirchman D L, ed. Microbial Ecology of the Oceans. Hoboken: John Wiley & Sons, Inc. 207–241

    Chapter  Google Scholar 

  • Nagata T, Kirchman D L. 1996. Bacterial degradation of protein adsorbed to model submicron particles in seawater. Mar Ecol Prog Ser, 132: 241–248

    Article  Google Scholar 

  • Nelson N B, Siegel D A, Carlson C A, Swan C M. 2010. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophys Res Lett, 37: L03610

    Article  Google Scholar 

  • Noriega-Ortega B E, Wienhausen G, Mentges A, Dittmar T, Simon M, Niggemann J. 2019. Does the chemodiversity of bacterial exometabolomes sustain the chemodiversity of marine dissolved organic matter? Front Microbiol, 10, https://doi.org/10.3389/fmicb.2019.00215

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R. 2001. Production of refractory dissolved organic matter by bacteria. Science, 292: 917–920

    Article  Google Scholar 

  • Oni O E, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs K U, Friedrich M W. 2015. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea. Front Microbiol, 6, https://doi.org/10.3389/fmicb.2015.01290

  • Ouverney C C, Fuhrman J A. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol, 65: 1746–1752

    Article  Google Scholar 

  • Paço A, Duarte K, da Costa J P, Santos P S M, Pereira R, Pereira M E, Freitas A C, Duarte A C, Rocha-Santos T A P. 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ, 586: 10–15

    Article  Google Scholar 

  • Penniston J T. 1971. High hydrostatic pressure and enzymic activity: Inhibition of multimeric enzymes by dissociation. Arch Biochem Biophys, 142: 322–332

    Article  Google Scholar 

  • Pomeroy L R. 1974. The ocean’s food web, a changing paradigm. Bioscience, 24: 499–504

    Article  Google Scholar 

  • Porter A W, Young L Y. 2014. Chapter 5-benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds. In: Sariaslani S, Gadd G M, eds. Advances in Applied Microbiology. London: Academic Press. 167–203

    Google Scholar 

  • Pütter A. 1907. Der Stoffhaushalt des Meeres. Zeitschriftfür Allgemeine Physiologie, 7: 321–368

    Google Scholar 

  • Quinn J P, Kulakova A N, Cooley N A, McGrath J W. 2007. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ Microbiol, 9: 2392–2400

    Article  Google Scholar 

  • Raymond P A, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature, 503: 355–359

    Article  Google Scholar 

  • Rivkin R B, Legendre L. 2001. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science, 291: 2398–2400

    Article  Google Scholar 

  • Rocker D, Brinkhoff T, Grüner N, Dogs M, Simon M. 2012. Composition of humic acid-degrading estuarine and marine bacterial communities. FEMS Microbiol Ecol, 80: 45–63

    Article  Google Scholar 

  • Ruff S E. 2020. Microbial communities and metabolisms at hydrocarbon seeps. In: Teske A, Carvalho V, eds. Marine Hydrocarbon Seeps: Microbiology and Biogeochemistry of a Global Marine Habitat. Cham: Springer International Publishing. 1–19

    Google Scholar 

  • Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H J, Cuenca M, Field C M, Coelho L P, Cruaud C, Engelen S, Gregory A C, Labadie K, Marec C, Pelletier E, Royo-Llonch M, Roux S, Sánchez P, Uehara H, Zayed A A, Zeller G, Carmichael M, Dimier C, Ferland J, Kandels S, Picheral M, Pisarev S, Poulain J, Acinas S G, Babin M, Bork P, Bowler C, de Vargas C, Guidi L, Hingamp P, Iudicone D, Karp-Boss L, Karsenti E, Ogata H, Pesant S, Speich S, Sullivan M B, Wincker P, Sunagawa S, Acinas S G, Babin M, Bork P, Boss E, Bowler C, Cochrane G, de Vargas C, Follows M, Gorsky G, Grimsley N, Guidi L, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Karp-Boss L, Karsenti E, Not F, Ogata H, Pesant S, Poulton N, Raes J, Sardet C, Speich S, Stemmann L, Sullivan M B, Sunagawa S, Wincker P. 2019. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell, 179: 1068–1083.e21

    Article  Google Scholar 

  • Santos-Júnior C D, Sarmento H, de Miranda F P, Henrique-Silva F, Logares R. 2020. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome, 8: 151

    Article  Google Scholar 

  • Schindler D W, Vallentyne J R. 2008. The Algal Bowl: overfertilization of the World’s Freshwaters and Estuaries. Edmonton: University of Alberta Press

    Google Scholar 

  • Schopf J W. 1983. Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton: Princeton University Press

    Google Scholar 

  • Seidel M, Yager P L, Ward N D, Carpenter E J, Gomes H R, Krusche AV, Richey J E, Dittmar T, Medeiros P M. 2015. Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum. Mar Chem, 177: 218–231

    Article  Google Scholar 

  • Seitz K W, Dombrowski N, Eme L, Spang A, Lombard J, Sieber J R, Teske A P, Ettema T J G, Baker B J. 2019. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun, 10: 1822

    Article  Google Scholar 

  • Shah A A, Hasan F, Hameed A, Ahmed S. 2008. Biological degradation of plastics: A comprehensive review. Biotechnol Adv, 26: 246–265

    Article  Google Scholar 

  • Sherr B F, Sherr E B, Hopkinson C S. 1988. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia, 159: 19–26

    Article  Google Scholar 

  • Sichert A, Corzett C H, Schechter M S, Unfried F, Markert S, Becher D, Fernandez-Guerra A, Liebeke M, Schweder T, Polz M F, Hehemann J H. 2020. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol, 5: 1026–1039

    Article  Google Scholar 

  • Sinsabaugh R L, Findlay S. 2003. Chapter 20-dissolved organic matter: Out of the black box into the mainstream. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 479–498

    Chapter  Google Scholar 

  • Sipler R E, Bronk D A, Seitzinger S P, Lauck R J, McGuinness L R, Kirkpatrick G J, Heil C A, Kerkhof L J, Schofield O M. 2013. Trichodesmium-derived dissolved organic matter is a source of nitrogen capable of supporting the growth of toxic red tide Karenia brevis. Mar Ecol Prog Ser, 483: 31–45

    Article  Google Scholar 

  • Sipler R E, Kellogg C T E, Connelly T L, Roberts Q N, Yager P L, Bronk D A. 2017. Microbial community response to terrestrially derived dissolved organic matter in the coastal arctic. Front Microbiol, 8, https://doi.org/10.3389/fmicb.2017.01018

  • Smith H J, Dieser M, McKnight D M, SanClements M D, Foreman C M. 2018. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiol Ecol, 94, https://doi.org/10.1093/femsec/fiy090

  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z. 2011. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull, 62: 2122–2128

    Article  Google Scholar 

  • Sosa O A, Repeta D J, Ferrón S, Bryant J A, Mende D R, Karl D M, DeLong E F. 2017. Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter. Front Microbiol, 8, https://doi.org/10.3389/fmicb.2017.01786

  • Spencer R G M, Guo W, Raymond P A, Dittmar T, Hood E, Fellman J, Stubbins A. 2014. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau. Geochim Cosmochim Acta, 142: 64–74

    Article  Google Scholar 

  • Strome D J, Miller M C. 2010. Photolytic changes in dissolved humic substances. SIL Proc 1922–2010, 20: 1248–1254

    Article  Google Scholar 

  • Stubbins A, Niggemann J, Dittmar T. 2012. Photo-lability of deep ocean dissolved black carbon. Biogeosciences, 9: 1661–1670

    Article  Google Scholar 

  • Stubbins A, Spencer R G M, Chen H, Hatcher P G, Mopper K, Hernes P J, Mwamba V L, Mangangu A M, Wabakanghanzi J N, Six J. 2010. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr, 55: 1467–1477

    Article  Google Scholar 

  • Suttle C A. 2005. Viruses in the sea. Nature, 437: 356–361

    Article  Google Scholar 

  • Tang K, Jiao N, Liu K, Zhang Y, Li S. 2012. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: Implications for dissolved organic matter utilization. PLoS ONE, 7: e41204

    Article  Google Scholar 

  • Tanoue E, Nishiyama S, Kamo M, Tsugita A. 1995. Bacterial membranes: Possible source of a major dissolved protein in seawater. Geochim Cosmochim Acta, 59: 2643–2648

    Article  Google Scholar 

  • Tao X, Feng J, Yang Y, Wang G, Tian R, Fan F, Ning D, Bates C T, Hale L, Yuan M M, Wu L, Gao Q, Lei J, Schuur E A G, Yu J, Bracho R, Luo Y, Konstantinidis K T, Johnston E R, Cole J R, Penton C R, Tiedje J M, Zhou J. 2020. Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome, 8: 84

    Article  Google Scholar 

  • Taube R, Ganzert L, Grossart H P, Gleixner G, Premke K. 2018. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Sci Total Environ, 610–611: 469–481

    Article  Google Scholar 

  • Taylor C R, Hardiman E M, Ahmad M, Sainsbury P D, Norris P R, Bugg T D H. 2012. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol, 113: 521–530

    Article  Google Scholar 

  • Teeling H, Fuchs B M, Becher D, Klockow C, Gardebrecht A, Bennke C M, Kassabgy M, Huang S, Mann A J, Waldmann J, Weber M, Klind-worth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann F D, Callies U, Gerdts G, Wichels A, Wiltshire K H, Glöckner F O, Schweder T, Amann R. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 336: 608–611

    Article  Google Scholar 

  • Tripp H J, Kitner J B, Schwalbach M S, Dacey J W H, Wilhelm L J, Giovannoni S J. 2008. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature, 452: 741–744

    Article  Google Scholar 

  • Valentine D L, Kessler J D, Redmond M C, Mendes S D, Heintz M B, Farwell C, Hu L, Kinnaman F S, Yvon-Lewis S, Du M, Chan E W, Garcia Tigreros F, Villanueva C J. 2010. Propane respiration jumpstarts microbial response to a deep oil spill. Science, 330: 208–211

    Article  Google Scholar 

  • Vanwonterghem I, Evans P N, Parks D H, Jensen P D, Woodcroft B J, Hugenholtz P, Tyson G W. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 1: 16170

    Article  Google Scholar 

  • Vetter Y A, Deming J W, Jumars P A, Krieger-Brockett B B. 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb Ecol, 36: 75–92

    Article  Google Scholar 

  • Vorobev A, Sharma S, Yu M, Lee J, Washington B J, Whitman W B, Ballantyne Iv F, Medeiros P M, Moran M A. 2018. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol, 20: 3012–3030

    Article  Google Scholar 

  • Wang W, Tao J, Liu H, Li P, Chen S, Wang P, Zhang C. 2020. Contrasting bacterial and archaeal distributions reflecting different geochemical processes in a sediment core from the Pearl River Estuary. AMB Expr, 10: 16

    Article  Google Scholar 

  • Wang Y, Wegener G, Ruff S E, Wang F. 2021. Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in Archaea. Environ Microbiol, 23: 530–541

    Article  Google Scholar 

  • Ward N D, Bianchi T S, Sawakuchi H O, Gagne-Maynard W, Cunha A C, Brito D C, Neu V, de Matos Valerio A, da Silva R, Krusche AV, Richey J E, Keil R G. 2016. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River. J Geophys Res-Biogeosci, 121: 1522–1539

    Article  Google Scholar 

  • Warren R A J. 1996. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol, 50: 183–212

    Article  Google Scholar 

  • Weiner R M, Taylor L E, Henrissat B, Hauser L, Land M, Coutinho P M, Rancurel C, Saunders E H, Longmire A G, Zhang H, Bayer E A, Gilbert H J, Larimer F, Zhulin I B, Ekborg N A, Lamed R, Richardson P M, Borovok I, Hutcheson S. 2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, saccharophagusdegradans strain 2–40T. PLoS Genet, 4: e1000087

    Article  Google Scholar 

  • Weiss M S, Abele U, Weckesser J, Welte W, Schiltz E, Schulz G E. 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science, 254: 1627–1630

    Article  Google Scholar 

  • Wetzel R G. 1993. Humic compounds from wetlands: Complexation, inactivation, and reactivation of surface-bound and extracellular enzymes. SIL Proc 1922–2010, 25: 122–128

    Article  Google Scholar 

  • Wetzel R G. 2003. Chapter 19-dissolved organic carbon: detrital energetics, metabolic regulators, and drivers of ecosystem stability of aquatic ecosystems. In: Findlay S E G, Sinsabaugh R L, eds. Aquatic Ecosystems. Burlington: Academic Press. 455–477

    Chapter  Google Scholar 

  • White E M, Vaughan P P, Zepp R G. 2003. Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States. Aquat Sci-Res Across Boundaries, 65: 402–414

    Article  Google Scholar 

  • Whitman W B, Coleman D C, Wiebe W J. 1998. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA, 95: 6578–6583

    Article  Google Scholar 

  • Williams P. 2000. Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman D L, ed. Microbial Ecology of the Oceans. New York: Wiley-Blackwell

    Google Scholar 

  • Woese C R, Fox G E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA, 74: 5088–5090

    Article  Google Scholar 

  • Xiao X, Zhang Y, Wang F. 2021. Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond. Environ Microbiol Rep, 13: 68–72

    Article  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y. 2001. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab, 72: 323–327

    Article  Google Scholar 

  • Yamashita Y, Tanoue E. 2003. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar Chem, 82: 145–160

    Article  Google Scholar 

  • Yamashita Y, Tanoue E. 2008. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat Geosci, 1: 579–582

    Article  Google Scholar 

  • Young C L, Ingall E D. 2010. Marine dissolved organic phosphorus composition: Insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat Geochem, 16: 563–574

    Article  Google Scholar 

  • Yu T, Wu W, Liang W, Lever M A, Hinrichs K U, Wang F. 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA, 115: 6022–6027

    Article  Google Scholar 

  • Zhang J W, Dong H P, Hou L J, Liu Y, Ou Y F, Zheng Y L, Han P, Liang X, Yin G Y, Wu D M, Liu M, Li M. 2021. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J, 15: 1826–1843

    Article  Google Scholar 

  • Zhang C, Dang H, Azam F, Benner R, Legendre L, Passow U, Polimene L, Robinson C, Suttle C A, Jiao N. 2018. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev, 5:481–499

    Article  Google Scholar 

  • Zhang C L, Xie W, Martin-Cuadrado A B, Rodriguez-Valera F. 2015. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol, 6, https://doi.org/10.3389/fmicb.2015.01108

  • Zhang C J, Pan J, Duan C H, Wang Y M, Liu Y, Sun J, Zhou H C, Song X, Li M. 2019. Prokaryotic diversity in mangrove sediments across Southeastern China fundamentally differs from that in other biomes. mSystems, 4, https://doi.org/10.1128/mSystems.00442-19

  • Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, Chen F. 2019. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: Coupling of bacterial diversity and DOM chemodiversity. ISME J, 13: 2551–2565

    Article  Google Scholar 

  • Zhou Z, Liu Y, Lloyd K G, Pan J, Yang Y, Gu J D, Li M. 2019. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J, 13: 885–901

    Article  Google Scholar 

  • Zhou Z, Pan J, Wang F, Gu J D, Li M. 2018. Bathyarchaeota: Globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev, 42: 639–655

    Article  Google Scholar 

  • Zinger L, Gobet A, Pommier T. 2012. Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol, 21: 1878–1896

    Article  Google Scholar 

Download references

Acknowledgements

Thanks extend to the scientific editor and two anonymous reviewers for constructive suggestions to improve this manuscript. The authors appreciate David Michael Esserman for language editing. This work was supported by the Special Fund for Science and Technology and the Key Discipline Fund in Environmental Science and Engineering from Guangdong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meilian Chen or Ji-Dong Gu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Hur, J., Gu, JD. et al. Microbial degradation of various types of dissolved organic matter in aquatic ecosystems and its influencing factors. Sci. China Earth Sci. 66, 169–189 (2023). https://doi.org/10.1007/s11430-021-9996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9996-1

Keywords

Navigation