Skip to main content
Log in

Deep carbon recycling and isotope tracing: Review and prospect

  • Review
  • Progress of Projects Supported by NSFC
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Deep carbon recycling is an essential part of the global carbon cycle. The carbonates at the bottom of the ocean are brought to the mantle by subduction. Subsequently, deep carbon is released to the atmosphere in the form of CO2 through volcanism. At present, research on deep carbon recycling is still at its early stage. The proportion of subduction-related carbon and primary mantle-derived carbon in CO2 released by volcano is an important issue. Carbon isotopes can easily distinguish organic carbon from inorganic carbon. However, ∼95% of subduction-related and primary mantle-derived carbon released by volcano is inorganic, which carbon isotopes find difficult to distinguish. Recently, Ca and Mg isotope geochemistry has provided important tools for tracing crust-derived material recycling. Here we focus on this topic by introducing the principles of C, Ca, and Mg isotopes in tracing deep carbon recycling and previous research results. We also summarize the research progress on the total storage and phases of deep carbon, CO2 fluxes which depend on the release via volcanism, the partial melting of the carbon-bearing mantle, and carbon behaviour during oceanic subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang P X. Earth system science in China quo vad is (in Chinese)? Adv in Earth Sci, 2003, 18: 837–851

    Google Scholar 

  2. Qu J S, Sun C Q, Zhang Z Q, et al. Trends and advances of the global chance studies on carbon cycle (in Chinese). Adv in Earth Sci, 2003, 18: 980–987

    Google Scholar 

  3. Deines P. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev, 2002, 58: 247–278

    Article  Google Scholar 

  4. Huang S C, Farkaš J, Jacobsen S B. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 2011, 75: 4987–4997

    Article  Google Scholar 

  5. Li W Y, Teng F Z, Ke S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 2010, 74: 6867–6884

    Article  Google Scholar 

  6. Bureau H, Pineau F, Métrich N, et al. A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island). Chem Geol, 1998, 147: 115–130

    Article  Google Scholar 

  7. Cartigny P, Jendrzejewski N, Pineau F, et al. Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: The case of the Southwest Indian Ridge. Earth Planet Sci Lett, 2001, 194: 241–257

    Article  Google Scholar 

  8. Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 2002, 419: 451–455

    Article  Google Scholar 

  9. Aubaud C, Pineau F, Hékinian R, et al. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet Sci Lett, 2005, 235: 511–527

    Article  Google Scholar 

  10. Cartigny P, Pineau F, Aubaud C, et al. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N). Earth Planet Sci Lett, 2008, 265: 672–685

    Article  Google Scholar 

  11. Shaw A M, Behn M D, Humphris S E, et al. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett, 2010, 289: 311–322

    Article  Google Scholar 

  12. Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 2010, 298: 1–13

    Article  Google Scholar 

  13. Hirschmann M M, Dasgupta R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem Geol, 2009, 262: 4–16

    Article  Google Scholar 

  14. Yoder C F. Astrometric and geodetic properties of Earth and the solar system. In: Ahrens T J, ed. Global Earth Physics: A Handbook of Physical Constants, AGU Reference Shelf. Washington D C: American Geophysical Union, 1995. 1–31

    Chapter  Google Scholar 

  15. McDonough W F. Compositional Model for the Earth’s Core. In: Holland H D, Turrekian K K, eds. Treatise on Geochemistry. Amsterdam: Elsevier, 2004. 547–568

    Google Scholar 

  16. Shcheka S S, Wiedenbeck M, Frost D J, et al. Carbon solubility in mantle minerals. Earth Planet Sci Lett, 2006, 245: 730–742

    Article  Google Scholar 

  17. Liu L G, Mernagh T P. Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral, 1990, 75: 801–806

    Google Scholar 

  18. Dalton J A, Presnall D C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol, 1998, 131: 123–135

    Article  Google Scholar 

  19. Hammouda T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 2003, 214: 357–368

    Article  Google Scholar 

  20. Yaxley G M, Brey G P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 2004, 146: 606–619

    Article  Google Scholar 

  21. Dasgupta R, Hirschmann M M, Dellas N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 2005, 149: 288–305

    Article  Google Scholar 

  22. Thomsen T B, Schmidt M W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatitie liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 2008, 267: 17–31

    Article  Google Scholar 

  23. Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition. Nature, 1988, 335: 343–346

    Article  Google Scholar 

  24. Falloon T J, Green D H. The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett, 1989, 94: 364–370

    Article  Google Scholar 

  25. Falloon T J, Green D H. Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 1990, 18: 195–199

    Article  Google Scholar 

  26. Dasgupta R, Hirschmann M M, Withers A C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 2004, 227: 73–85

    Article  Google Scholar 

  27. Dasgupta R, Hirschmann M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 2006, 440: 659–662

    Article  Google Scholar 

  28. Dasgupta R, Hirschmann M M. Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral, 2007, 92: 370–379

    Article  Google Scholar 

  29. Dasgupta R, Hirschmann M M. A modified iterative sandwich method for determination of near-solidus partial melt compositions. III. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib Mineral Petrol, 2007, 154: 647–661

    Article  Google Scholar 

  30. Brey G P, Bulatov V K, Girnis A V, et al. Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol, 2008, 49: 797–821

    Article  Google Scholar 

  31. Ghosh S, Ohtani E, Litasov K D, et al. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol, 2009, 262: 17–28

    Article  Google Scholar 

  32. Litasov K D, Ohtani E. Solidus and phase relations of carbonated peridotite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2 to the lower mantle depths. Phys Earth Planet Interiors, 2009, 177: 46–58

    Article  Google Scholar 

  33. Tsuno K, Dasgupta R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 2011, 161: 743–763

    Article  Google Scholar 

  34. Woodland A B, Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, South Africa. Earth Planet Sci Lett, 2003, 214: 295–310

    Article  Google Scholar 

  35. Frost D J, McCammon C A. The redox state of the Earth’s mantle. Annu Rev Earth Planet Sci, 2008, 36: 389–420

    Article  Google Scholar 

  36. Stagno V, Frost D J. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett, 2010, 300: 72–84

    Article  Google Scholar 

  37. Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 2011, 472: 209–212

    Article  Google Scholar 

  38. Yin Q P. How is the diamand created (in Chinese). Jewel Sci Technol, 2004, 16: 44–50

    Google Scholar 

  39. Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner Depos, 2001, 36: 490–502

    Article  Google Scholar 

  40. Dixon J E. Degassing of alkalic basalts. Am Mineral, 1997, 82: 368–378

    Google Scholar 

  41. Lesne P, Scaillet B, Pichavant M, et al. The carbon dioxide solubility in alkali basalts: An experimental study. Contrib Mineral Petrol, 2011, 162: 153–168

    Article  Google Scholar 

  42. Rea D K, Ruff L J. Composition and mass flux of sediment entering the world’s subduction zones: Implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet Sci Lett, 1996, 140: 1–12

    Article  Google Scholar 

  43. Shen X J, Zhang L F. Current research progress in petrology of carbonated eclogites (in Chinese). Earth Sci Front, 2009, 16: 374–384

    Article  Google Scholar 

  44. Johnston F K B, Turchyn A V, Edmonds M. Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet Sci Lett, 2011, 303: 143–152

    Article  Google Scholar 

  45. Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 1998, 145: 325–394

    Article  Google Scholar 

  46. Carlson R L, Herrick C N. Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res, 1990, 95: 9153–9170

    Article  Google Scholar 

  47. Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 1984, 3: 63–77

    Article  Google Scholar 

  48. Marty B, Tolstikhin I N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol, 1998, 145: 233–248

    Article  Google Scholar 

  49. Wang C Y. Density and constitution of the mantle. J Geophys Res, 1970, 75: 3264–3284

    Article  Google Scholar 

  50. Hayes J M, Waldbauer J R. The carbon cycle and associated redox processes through time. Phil Trans R Soc B, 2006, 361: 931–950

    Article  Google Scholar 

  51. Hilton D R, Fischer T P, Marty B. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 2002, 47: 319–370

    Article  Google Scholar 

  52. Sano Y, Williams S N. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett, 1996, 23: 2749–2752

    Article  Google Scholar 

  53. Ingebritsen S E, Manning C E. Diffuse fluid flux through orogenic belts: Implications for the world ocean. Proc Nat Acad Sci USA, 2002, 99: 9113–9116

    Article  Google Scholar 

  54. Blundy J, Cashman K V, Rust A, et al. A case for CO2-rich arc magmas. Earth Planet Sci Lett, 2010, 290: 289–301

    Article  Google Scholar 

  55. Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 2010, 160: 489–510

    Article  Google Scholar 

  56. Muehlenbachs K, Byerly G. 18O-Enrichment of silicic magmas caused by crystal fractionation at the Galapagos Spreading Center. Contrib Mineral Petrol, 1982, 79: 76–79

    Article  Google Scholar 

  57. Teng F Z, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science, 2008, 320: 1620–1622

    Article  Google Scholar 

  58. Schuessler J A, Schoenberg R, Sigmarsson O. Iron and lithium isotope systematics of the Hekla volcano, Iceland-Evidence for Fe isotope fractionation during magma differentiation. Chem Geol, 2009, 258: 78–91

    Article  Google Scholar 

  59. Teng F Z, Wadhwa M, Helz R T. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett, 2007, 261: 84–92

    Article  Google Scholar 

  60. Liu S A, Teng F Z, He Y S, et al. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett, 2010, 297: 646–654

    Article  Google Scholar 

  61. Amini M, Eisenhauer A, Böhm F, et al. Calcium isotopes (δ 44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: Evidence for Ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res, 2009, 33: 231–247

    Article  Google Scholar 

  62. Schidlowski M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 1988, 333: 313–318

    Article  Google Scholar 

  63. Cartigny P. Stable isotopes and the origin of diamond. Elements, 2005, 1: 79–84

    Article  Google Scholar 

  64. Walter M J, Kohn S C, Araujo D, et al. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 2011, 334: 54–57

    Article  Google Scholar 

  65. Lupton J E. Terrestrial inert gases-Isotope tracer studies and clues to primordial components in the mantle. Ann Rev Earth Planet Sci, 1983, 11: 371–414

    Article  Google Scholar 

  66. Sano Y, Marty B. Origin of carbon in fumarolic gas from island arcs. Chem Geol, 1995, 119: 265–274

    Article  Google Scholar 

  67. Sano Y, Gamo T, Williams S N. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J Volcanol Geotherm Res, 1997, 77: 255–265

    Article  Google Scholar 

  68. Hilton D R, Craig H. A helium isotope transect along the Indonesian archipelago. Nature, 1989, 342: 906–908

    Article  Google Scholar 

  69. Milliman J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochem Cycles, 1993, 7: 927–957

    Article  Google Scholar 

  70. Chang V T C, Williams R J P, Makishima A, et al. Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun, 2004, 323: 79–85

    Article  Google Scholar 

  71. Galy A, Yoffe O, Janney P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom, 2003, 18: 1352–1356

    Article  Google Scholar 

  72. Wombacher F, Eisenhauer A, Böhm F, et al. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim Cosmochim Acta, 2011, 75: 5797–5818

    Article  Google Scholar 

  73. Li W Y, Teng F Z, Xiao Y L, et al. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett, 2011, 304: 224–230

    Article  Google Scholar 

  74. Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem Geol, 1996, 133: 29–51

    Article  Google Scholar 

  75. Zhang R Y, Liou J G, Cong B L. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Petrol, 1995, 36: 1011–1037

    Article  Google Scholar 

  76. Yang W, Teng F Z, Zhang H F, et al. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 2012, doi: 10.1016/j.chemgeo.2012.05.018

  77. Anderson D L. Chemical composition of the mantle. J Geophys Res, 1983, 88(Suppl): B41–B52

    Article  Google Scholar 

  78. Eisenhauer A, Nägler T F, Stille P, et al. Proposal for an international agreement on Ca notation as a result of the discussion from the workshop on stable isotope measurements in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand Geoanal Res, 2004, 28: 149–151

    Article  Google Scholar 

  79. Farkaš J, Buhl D, Blenkinsop J, et al. Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ 44/40Ca of marine skeletal carbonates. Earth Planet Sci Lett, 2007, 253: 96–111

    Article  Google Scholar 

  80. Holmden C. Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: Implications for subsurface dolomitisation and local Ca cycling. Chem Geol, 2009, 268: 180–188

    Article  Google Scholar 

  81. DePaolo D J. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev Mineral Geochem, 2004, 55: 255–288

    Article  Google Scholar 

  82. Huang S C, Farkaš J, Jacobsen S B. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett, 2010, 292: 337–344

    Article  Google Scholar 

  83. Simon J I, DePaolo D J. Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett, 2010, 289: 457–466

    Article  Google Scholar 

  84. De La Rocha C L, DePaolo D J. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science, 2000, 289: 1176–1178

    Article  Google Scholar 

  85. Fantle M S, DePaolo D J. Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett, 2005, 237: 102–117

    Article  Google Scholar 

  86. Gussone N, Böhm F, Eisenhauer A, et al. Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta, 2005, 69: 4485–4494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongMing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Li, S. Deep carbon recycling and isotope tracing: Review and prospect. Sci. China Earth Sci. 55, 1929–1941 (2012). https://doi.org/10.1007/s11430-012-4532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4532-y

Keywords

Navigation