Skip to main content
Log in

Determinations of new psychoactive substances in biological matrices with focus on microextraction techniques: a review of fundamentals and state-of-the-art extraction methods

  • Review Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

This review article provides a detailed discussion of studies in which microextraction techniques are applied for the determination of new psychoactive substances (NPS) in biological samples. Definitions and classifications of NPS are highlighted as well as the fundamentals of the microextraction techniques used in their analyses.

Methods

A complete literature search was carried out with PubMed, Scopus and the World Wide Web using relevant keywords, e.g., NPS, microextraction and biological fluids.

Results

The determinations of NPS in biological samples remain a challenge for analytical laboratories due to its wide diversity of compounds. The utilization of microextraction techniques in this context is still not many. However, the 96 deep well plate for microextraction and microextraction by packed sorbent (MEPS) can be highlighted as the most explored configurations. Microextraction approaches have the potential to be further improved and optimized to provide rapid and low-cost analyses with reliable results.

Conclusions

There is a wide scope of microextraction techniques to be explored in the field of toxicology and NPS determinations. These techniques are compatible with recent trends of automation and miniaturization, which can enable a straightforward workflow for NPS analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction and Europol (2019) EU drug markets report 2019. EMCDDA, Lisbon. https://doi.org/10.2810/796253

    Book  Google Scholar 

  2. United Nations Office on Drug and Crime (UNODC) (2019) Early warning advisory on new psychoactive substances. https://www.unodc.org/LSS/Home/NPS. Accessed 10 Apr 2020

  3. Logan BK, Mohr ALA, Friscia M, Krotulski AJ, Papsun DM, Kacinko SL, Ropero-Miller JD, Huestis MA (2017) Reports of adverse events associated with use of novel psychoactive substances, 2013–2016: a review. J Anal Toxicol 41:573–610. https://doi.org/10.1093/jat/bkx031(open access article)

    Article  CAS  PubMed  Google Scholar 

  4. Fagiola M, Hahn T, Avella J (2018) Screening of novel psychoactive substances in postmortem matrices by liquid chromatography–tandem mass spectrometry (LC–MS–MS). J Anal Toxicol 42:562–569. https://doi.org/10.1093/jat/bky050 (open access article)

    Article  CAS  PubMed  Google Scholar 

  5. Rasanen I, Kyber M, Szilvay I, Rintatalo J, Ojanperä I (2019) Single-calibrant quantification of seized synthetic opioids by liquid chromatography-chemiluminescence nitrogen detection. Forensic Sci Int 305:110001. https://doi.org/10.1016/j.forsciint.2019.110001

    Article  CAS  PubMed  Google Scholar 

  6. de Souza BB, Filho JS, Nonemacher K, Schroeder SD, Arbo MD, Rezin KZ (2020) New psychoactive substances (NPS) prevalence over LSD in blotter seized in State of Santa Catarina, Brazil: a six-year retrospective study. Forensic Sci Int 306:110002. https://doi.org/10.1016/j.forsciint.2019.110002

    Article  CAS  Google Scholar 

  7. Segawa H, Fukuoka T, Itoh T, Imai Y, Iwata YT, Yamamuro T, Kuwayama K, Tsujikawa K, Kanamori T, Inoue H (2019) Rapid detection of synthetic cannabinoids in herbal highs using surface-enhanced Raman scattering produced by gold nanoparticle co-aggregation in a wet system. Analyst 144:6928–6935. https://doi.org/10.1039/C9AN01512D

    Article  CAS  PubMed  Google Scholar 

  8. Machado Y, Neto JC, Lordeiro RA, Silva MF, Piccin E (2018) Profile of new psychoactive substances (NPS) and other synthetic drugs in seized materials analysed in a Brazilian forensic laboratory. Forensic Toxicol 37:265–271. https://doi.org/10.1007/s11419-018-0456-3

    Article  Google Scholar 

  9. Adamowicz P, Gieroń J, Gil D, Lechowicz W, Skulska A, Tokarczyk B (2016) The prevalence of new psychoactive substances in biological material: a three-year review of casework in Poland. Drug Test Anal 8:63–70. https://doi.org/10.1002/dta.1924

    Article  CAS  PubMed  Google Scholar 

  10. Peacock A, Bruno R, Gisev N, Degenhardt L, Hall W, Sedefov R, White J, Thomas KV, Farrell M, Griffiths P (2019) New psychoactive substances: challenges for drug surveillance, control, and public health responses. Lancet 394:1668–1684. https://doi.org/10.1016/S0140-6736(19)32231-7

    Article  PubMed  Google Scholar 

  11. Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M (2016) New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 905:8–23. https://doi.org/10.1016/j.aca.2015.10.041

    Article  CAS  PubMed  Google Scholar 

  12. Niu Z, Zhang W, Yu C, Zhang J, Wen Y (2018) Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Analyt Chem 102:123–146. https://doi.org/10.1016/j.trac.2018.02.005

    Article  CAS  Google Scholar 

  13. Filippou O, Bitas D, Samanidou V (2017) Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J Chromatogr B 1043:44–62. https://doi.org/10.1016/j.jchromb.2016.08.040 (open access article)

    Article  CAS  Google Scholar 

  14. Sajid M, Płotka-Wasylka J (2018) Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 103:74–86. https://doi.org/10.1016/j.trac.2018.03.013

    Article  CAS  Google Scholar 

  15. Mafra G, García-Valverde MT, Millán-Santiago J, Carasek E, Lucena R, Cárdenas S (2020) Returning to nature for the design of sorptive phases in solid-phase microextraction. Separations 7:2. https://doi.org/10.3390/separations7010002 (open access article)

    Article  CAS  Google Scholar 

  16. Kissoudi M, Samanidou V (2018) Recent advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules 23:1437. https://doi.org/10.3390/molecules23061437 (open access article)

    Article  CAS  PubMed Central  Google Scholar 

  17. Pacheco-Fernández I, Pino V (2019) Green solvents in analytical chemistry. Curr Opin Green Sustain Chem 18:42–50. https://doi.org/10.1016/j.cogsc.2018.12.010

    Article  Google Scholar 

  18. Kabir A, Locatelli M, Ulusoy HI (2017) Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 4:36. https://doi.org/10.3390/separations4040036 (open access article)

    Article  CAS  Google Scholar 

  19. He Y, Concheiro-Guisan M (2019) Microextraction sample preparation techniques in forensic analytical toxicology. Biomed Chromatogr 33:e4444. https://doi.org/10.1002/bmc.4444

    Article  CAS  PubMed  Google Scholar 

  20. Barroso M, Moreno I, da Fonseca B, Queiroz JA, Gallardo E (2012) Role of microextraction sampling procedures in forensic toxicology. Bioanalysis 4:1805–1826. https://doi.org/10.4155/bio.12.139

    Article  CAS  PubMed  Google Scholar 

  21. de Oliveira SG, Pego AMF, Silva JP, Yonamine M (2019) Green sample preparations for the bioanalysis of drugs of abuse in complex matrices. Bioanalysis 11:295–312. https://doi.org/10.4155/bio-2018-0208

    Article  CAS  Google Scholar 

  22. European Monitoring Centre for Drugs and Drug Addiction (2020) European drug report 2020: trends and developments. EMCDDA, Lisbon. https://doi.org/10.2810/420678

    Book  Google Scholar 

  23. Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS (2020) The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Crit Rev Toxicol 50:359–382. https://doi.org/10.1080/10408444.2020.1762539

    Article  CAS  PubMed  Google Scholar 

  24. Mechoulam R, Lander N, University A, Zahalka J (1990) Synthesis of the individual, pharmacologically distinct, enantiomers of a tetrahydrocannabinol derivative. Tetrahedron-Asymmetry 1:315–318. https://doi.org/10.1016/S0957-4166(00)86322-3

    Article  CAS  Google Scholar 

  25. Ho TC, Tius MA (2019) Synthesis of classical/nonclassical hybrid cannabinoids and related compounds. In: Kobayashi Y (ed) Cutting-edge organic synthesis and chemical biology of bioactive molecules. Springer, Singapore, pp 247–289

    Chapter  Google Scholar 

  26. Shevyrin VA, Morzherin YY (2015) Cannabinoids: structures, effects, and classification. Russ Chem Bull 64:1249–1266. https://doi.org/10.1007/s11172-015-1008-1

    Article  CAS  Google Scholar 

  27. Baumann MH, Walters HM, Niello M, Sitte HH (2018) Neuropharmacology of synthetic cathinones. In: Maurer H, Brandt S (eds) Handbook of experimental pharmacology. Springer, Cham, pp 113–142

    Google Scholar 

  28. Pieprzyca E, Skowronek R, Nižnanský Ľ, Czekaj P (2020) Synthetic cathinones: from natural plant stimulant to new drug of abuse. Eur J Pharmacol 875:173012. https://doi.org/10.1016/j.ejphar.2020.173012

    Article  CAS  PubMed  Google Scholar 

  29. Valente MJ, de Pinho PG, de Lourdes BM, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45. https://doi.org/10.1007/s00204-013-1163-9

    Article  CAS  PubMed  Google Scholar 

  30. Sainsbury PD, Kicman AT, Archer RP, King LA, Braithwaite RA (2011) Aminoindanes: the next wave of ‘legal highs’? Drug Test Anal 3:479–482. https://doi.org/10.1002/dta.318

    Article  CAS  PubMed  Google Scholar 

  31. Poulie CBM, Jensen AA, Halberstadt AL, Kristensen JL (2020) DARK classics in chemical neuroscience: NBOMes. ACS Chem Neurosci 11:3860–3869. https://doi.org/10.1021/acschemneuro.9b00528

    Article  CAS  Google Scholar 

  32. dos Santos Moreira AM, de Oliveira HL, Filho JFA, Florez DHÂ, Borges MMC, Lacerda V Jr, Romão W, Borges KB (2019) NBOMe compounds: an overview about analytical methodologies aiming their determination in biological matrices. Trends Analyt Chem 114:260–277. https://doi.org/10.1016/j.trac.2019.02.034

    Article  CAS  Google Scholar 

  33. Arantes LC, Júnior EF, de Souza LF, Cardoso AC, Alcântara TLF, Lião LM, Machado Y, Lordeiro RA, Neto JC, Andrade AFB (2017) 25-I-NBOH: a new potent serotonin 5-HT2A receptor agonist identified in blotter paper seizures in Brazil. Forensic Toxicol 35:408–414. https://doi.org/10.1007/s11419-017-0357-x (open access article)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins M (2011) Some new psychoactive substances: precursor chemicals and synthesis-driven end-products. Drug Test Anal 3:404–416. https://doi.org/10.1002/dta.315

    Article  CAS  PubMed  Google Scholar 

  35. Tabarra I, Soares S, Rosado T, Gonçalves J, Luís Â, Malaca S, Barroso M, Keller T, Restolho J, Gallardo E (2019) Novel synthetic opioids: toxicological aspects and analysis. Forensic Sci Res 4:111–140. https://doi.org/10.1080/20961790.2019.1588933 (open access article)

    Article  PubMed  PubMed Central  Google Scholar 

  36. El Balkhi S, Monchaud C, Herault F, Géniaux H, Saint-Marcoux F (2020) Designer benzodiazepines’ pharmacological effects and potencies: how to find the information. J Psychopharmacol 34:1021–1029. https://doi.org/10.1177/0269881119901096

    Article  CAS  PubMed  Google Scholar 

  37. Kokosa JM (2019) Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method. Trends Analyt Chem 118:238–247. https://doi.org/10.1016/j.trac.2019.05.012

    Article  CAS  Google Scholar 

  38. Hansen FA, Pedersen-Bjergaard S (2020) Emerging extraction strategies in analytical chemistry. Anal Chem 92:2–15. https://doi.org/10.1021/acs.analchem.9b04677

    Article  CAS  PubMed  Google Scholar 

  39. Wei G, Li Y, Wang X (2007) Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography for the determination of methomyl in natural waters. J Sep Sci 30:3262–3267. https://doi.org/10.1002/jssc.200700291

    Article  PubMed  Google Scholar 

  40. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J Chromatogr A 1216:885–891. https://doi.org/10.1016/j.chroma.2008.11.076

    Article  CAS  PubMed  Google Scholar 

  41. Zohrabi P, Shamsipur M, Hashemi M, Hashemi B (2016) Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 160:340–346. https://doi.org/10.1016/j.talanta.2016.07.036

    Article  CAS  PubMed  Google Scholar 

  42. González-Curbelo MÁ, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MÁ (2013) Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection. J Chromatogr A 1313:166–174. https://doi.org/10.1016/j.chroma.2013.05.081

    Article  CAS  PubMed  Google Scholar 

  43. Daneshfar A, Khezeli T, Lotfi HJ (2009) Determination of cholesterol in food samples using dispersive liquid–liquid microextraction followed by HPLC–UV. J Chromatogr B 877:456–460. https://doi.org/10.1016/j.jchromb.2008.12.050 (open access article)

    Article  CAS  Google Scholar 

  44. Rezaei F, Yamini Y, Moradi M, Daraei B (2013) Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Anal Chim Acta 804:135–142. https://doi.org/10.1016/j.aca.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  45. Rezaee M, Assadi Y, Hosseini M-RM, Aghaee E, Ahmadi F, Benrijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:1–9. https://doi.org/10.1016/j.chroma.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  46. Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid–liquid microextraction method. J Chromatogr A 1217:2342–2357. https://doi.org/10.1016/j.chroma.2009.11.088

    Article  CAS  PubMed  Google Scholar 

  47. Zgoła-Grześkowiak A, Grześkowiak T (2011) Dispersive liquid-liquid microextraction. Trends Analyt Chem 30:1382–1399. https://doi.org/10.1016/j.trac.2011.04.014

    Article  CAS  Google Scholar 

  48. Odoardi S, Fisichella M, Romolo FS, Strano-Rossi S (2015) High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC–MS/MS analysis. J Chromatogr B 1000:57–68. https://doi.org/10.1016/j.jchromb.2015.07.007 (open access article)

    Article  CAS  Google Scholar 

  49. Fernández P, Regenjo M, Ares A, Fernández AM, Lorenzo RA, Carro AM (2019) Simultaneous determination of 20 drugs of abuse in oral fluid using ultrasound-assisted dispersive liquid–liquid microextraction. Anal Bioanal Chem 411:193–203. https://doi.org/10.1007/s00216-018-1428-5

    Article  CAS  PubMed  Google Scholar 

  50. Vincenti F, Montesano C, Celluci L, Gregori A, Fanti F, Compagnone D, Curini R, Sergi M (2019) Combination of pressurized liquid extraction with dispersive liquid liquid micro extraction for the determination of sixty drugs of abuse in hair. J Chromatogr A 1605:360348. https://doi.org/10.1016/j.chroma.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  51. Pedersen-Bjergaard S, Rasmussen KE (2006) Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A 1109:183–190. https://doi.org/10.1016/j.chroma.2006.01.025

    Article  CAS  PubMed  Google Scholar 

  52. Hansen F, Jaghl F, Øiestad EL, Jensen H, Pedersen-Bjergaard S, Huang C (2020) Impact of ion balance in electromembrane extraction. Anal Chim Acta 1124:129–136. https://doi.org/10.1016/j.aca.2020.05.039

    Article  CAS  PubMed  Google Scholar 

  53. Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2006) Electrokinetic migration across artificial liquid membranes: tuning the membrane chemistry to different types of drug substances. J Chromatogr A 1124:29–34. https://doi.org/10.1016/j.chroma.2006.04.039

    Article  CAS  PubMed  Google Scholar 

  54. Rezazadeh M, Yamini Y, Seidi S (2011) Electromembrane extraction of trace amounts of naltrexone and nalmefene from untreated biological fluids. J Chromatogr B 879:1143–1148. https://doi.org/10.1016/j.jchromb.2011.03.043 (open access article)

    Article  CAS  Google Scholar 

  55. Vårdal L, Øiestad EL, Gjelstad A, Jensen H, Pedersen-Bjergaard S (2019) Electromembrane extraction with solvent modification of the acceptor solution: improved mass transfer of drugs of abuse from human plasma. Bioanalysis 11:755–771. https://doi.org/10.4155/bio-2018-0308

    Article  CAS  PubMed  Google Scholar 

  56. Gjelstad A, Rasmussen KE, Parmer MP, Pedersen-Bjergaard S (2013) Parallel artificial liquid membrane extraction: micro-scale liquid–liquid–liquid extraction in the 96-well format. Bioanalysis 5:1377–1385. https://doi.org/10.4155/BIO.13.59

    Article  CAS  PubMed  Google Scholar 

  57. Gjelstad A (2019) Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction. Trends Analyt Chem 113:25–31. https://doi.org/10.1016/j.trac.2019.01.007

    Article  CAS  Google Scholar 

  58. Ask KS, Bardakci T, Parmer MP, Halvorsen TG, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A (2016) Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma. J Pharm Biomed Anal 129:229–236. https://doi.org/10.1016/j.jpba.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  59. Ask KS, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A (2018) Dried blood spots and parallel artificial liquid membrane extraction: a simple combination of microsampling and microextraction. Anal Chim Acta 1009:56–64. https://doi.org/10.1016/j.aca.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  60. Ask KS, Lid M, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A (2019) Liquid-phase microextraction in 96-well plates: calibration and accurate quantification of pharmaceuticals in human plasma samples. J Chromatogr A 1602:117–123. https://doi.org/10.1016/j.chroma.2019.06.013

    Article  CAS  PubMed  Google Scholar 

  61. Vårdal L, Askildsen H-M, Gjelstad A, Øiestad EL, Edvardsen HME, Pedersen-Bjergaard S (2017) Parallel artificial liquid membrane extraction of new psychoactive substances in plasma and whole blood. J Chromatogr B 1048:77–84. https://doi.org/10.1016/j.jchromb.2017.02.010 (open access article)

    Article  CAS  Google Scholar 

  62. Vårdal L, Wong G, Øiestad AML, Pedersen-Bjergaard S, Gjelstad A, Øiestad EL (2018) Rapid determination of designer benzodiazepines, benzodiazepines, and Z-hypnotics in whole blood using parallel artificial liquid membrane extraction and UHPLC-MS/MS. Anal Bioanal Chem 410:4967–4978. https://doi.org/10.1007/s00216-018-1147-y

    Article  CAS  PubMed  Google Scholar 

  63. Spietelun A, Marcinkowski L, de la Guardia M, Namieśnik J (2013) Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 1321:1–13. https://doi.org/10.1016/j.chroma.2013.10.030

    Article  CAS  PubMed  Google Scholar 

  64. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  65. De Giovanni N, Marchetti D (2019) A systematic review of solid-phase microextraction applications in the forensic context. J Anal Toxicol 44:268–297. https://doi.org/10.1093/jat/bkz077

    Article  CAS  Google Scholar 

  66. Kataoka H, Saito K (2011) Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 54:926–950. https://doi.org/10.1016/j.jpba.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  67. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393:781–795. https://doi.org/10.1007/s00216-008-2375-3

    Article  CAS  PubMed  Google Scholar 

  68. Kremser A, Jochmann MA, Schmidt TC (2016) PAL SPME Arrow–evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal Bioanal Chem 408:943–952. https://doi.org/10.1007/s00216-015-9187-z (open access article)

    Article  CAS  PubMed  Google Scholar 

  69. Montesano C, Sergi M (2016) Microextraction techniques in illicit drug testing: present and future. Bioanalysis 8:863–866. https://doi.org/10.4155/bio-2016-0008

    Article  CAS  PubMed  Google Scholar 

  70. Queiroz MEC, Melo LP (2014) Selective capillary coating materials for in-tube solid-phase microextraction coupled to liquid chromatography to determine drugs and biomarkers in biological samples: a review. Anal Chim Acta 826:1–11. https://doi.org/10.1016/j.aca.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  71. Kataoka H (2015) SPME techniques for biomedical analysis. Bioanalysis 7:2135–2144. https://doi.org/10.4155/bio.15.145

    Article  CAS  PubMed  Google Scholar 

  72. Roszkowska A, Miękus N, Bączek T (2019) Application of solid-phase microextraction in current biomedical research. J Sep Sci 42:285–302. https://doi.org/10.1002/jssc.201800785

    Article  CAS  PubMed  Google Scholar 

  73. Pragst F (2007) Application of solid-phase microextraction in analytical toxicology. Anal Bioanal Chem 388:1393–1414. https://doi.org/10.1007/s00216-007-1289-9

    Article  CAS  PubMed  Google Scholar 

  74. Anzillotti L, Marezza F, Calò L, Andreoli R, Agazzi S, Bianchi F, Careri M, Cecchi R (2019) Determination of synthetic and natural cannabinoids in oral fluid by solid-phase microextraction coupled to gas chromatography/mass spectrometry: a pilot study. Talanta 201:335–341. https://doi.org/10.1016/j.talanta.2019.04.029

    Article  CAS  PubMed  Google Scholar 

  75. Alsenedi KA, Morrison C (2018) Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fibre tips and gas chromatography-mass spectrometry. Anal Methods 10:1431–1440. https://doi.org/10.1039/C8AY00041G

    Article  CAS  Google Scholar 

  76. Abdel-Rehim M (2004) New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications. I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry. J Chromatogr B 801:317–321. https://doi.org/10.1016/j.jchromb.2003.11.042(open access article)

    Article  CAS  Google Scholar 

  77. Moein MM, Abdel-Rehim A, Abdel-Rehim M (2015) Microextraction by packed sorbent (MEPS). Trends Analyt Chem 67:34–44. https://doi.org/10.1016/j.trac.2014.12.003

    Article  CAS  Google Scholar 

  78. De Boeck M, Dehaen W, Tytgat J, Cuypers E (2019) Microextractions in forensic toxicology: the potential role of ionic liquids. Trends Analyt Chem 111:73–84. https://doi.org/10.1016/j.trac.2018.11.036

    Article  CAS  Google Scholar 

  79. Abdel-Rehim M (2010) Recent advances in microextraction by packed sorbent for bioanalysis. J Chromatogr A 1217:2569–2580. https://doi.org/10.1016/j.chroma.2009.09.053

    Article  CAS  PubMed  Google Scholar 

  80. Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701:119–128. https://doi.org/10.1016/j.aca.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  81. Scientific Instruments Services (SIS) (2019) SGE MEPS™‐micro extraction by packed sorbent. https://www.sisweb.com/lc/sge-meps.htm. Accessed 27 May 2020

  82. Bianchi F, Agazzi S, Riboni N, Erdal N, Hakkarainen M, Ilag LL, Anzillotti L, Andreoli R, Marezza F, Moroni F, Cecchi R, Careri M (2019) Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta 202:136–144. https://doi.org/10.1016/j.talanta.2019.04.057

    Article  CAS  PubMed  Google Scholar 

  83. Sorribes-Soriano A, Monedero A, Esteve-Turrillas FA, Armenta S (2019) Determination of the new psychoactive substance dichloropane in saliva by microextraction by packed sorbent ion mobility spectrometry. J Chromatogr A 1603:61–66. https://doi.org/10.1016/j.chroma.2019.06.054

    Article  CAS  PubMed  Google Scholar 

  84. Sorribes-Soriano A, Verdeguer J, Pastor A, Armenta S, Esteve-Turrillas FA (2021) Determination of third generation synthetic cannabinoids in oral fluids. J Anal Toxicol 45:331–336. https://doi.org/10.1093/jat/bkaa091

    Article  PubMed  Google Scholar 

  85. Ares AM, Fernández P, Regenjo M, Fernández AM, Carro AM, Lorenzo RA (2017) A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 174:454–461. https://doi.org/10.1016/j.talanta.2017.06.022

    Article  CAS  PubMed  Google Scholar 

  86. Rocchi R, Simeoni MC, Montesano C, Vannutelli G, Curini R, Sergi M, Compagnone D (2018) Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography–tandem mass spectrometry. Drug Test Anal 10:865–873. https://doi.org/10.1002/dta.2330

    Article  CAS  PubMed  Google Scholar 

  87. Fernández P, González M, Regenjo M, Ares AM, Fernández AM, Lorenzo RA, Carro AM (2017) Analysis of drugs of abuse in human plasma using microextraction by packed sorbents and ultra-high-performance liquid chromatography. J Chromatogr A 1485:8–19. https://doi.org/10.1016/j.chroma.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  88. Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853–2858. https://doi.org/10.1021/ac060240i

    Article  CAS  PubMed  Google Scholar 

  89. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2015) Miniaturized solid-phase extraction techniques. Trends Analyt Chem 73:19–38. https://doi.org/10.1016/j.trac.2015.04.026

    Article  CAS  Google Scholar 

  90. Seidi S, Tajik M, Baharfar M, Rezazadeh M (2019) Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: miniaturized concepts for chromatographic analysis. Trends Analyt Chem 118:810–827. https://doi.org/10.1016/j.trac.2019.06.036

    Article  CAS  Google Scholar 

  91. Montesano C, Vannutelli G, Piccirilli V, Sergi M, Compagnone D, Curini R (2017) Application of a rapid μ-SPE clean-up for multiclass quantitative analysis of sixteen new psychoactive substances in whole blood by LC–MS/MS. Talanta 167:260–267. https://doi.org/10.1016/j.talanta.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  92. Sánchez-González J, Odoardi S, Bermejo AM, Bermejo-Barrera P, Romolo FS, Moreda-Piñeiro A, Strano-Rossi S (2019) HPLC-MS/MS combined with membrane-protected molecularly imprinted polymer micro-solid-phase extraction for synthetic cathinones monitoring in urine. Drug Test Anal 11:33–44. https://doi.org/10.1002/dta.2448

    Article  CAS  PubMed  Google Scholar 

  93. Morés L, Dias AN, Carasek E (2018) Development of a high-throughput method based on thin-film microextraction using a 96-well plate system with a cork coating for the extraction of emerging contaminants in river water samples. J Sep Sci 41:697–703. https://doi.org/10.1002/jssc.201700774

    Article  CAS  PubMed  Google Scholar 

  94. Mafra G, Vieira AA, Merib J, Anderson JL, Carasek E (2019) Single drop microextraction in a 96-well plate format: a step toward automated and high-throughput analysis. Anal Chim Acta 31:159–166. https://doi.org/10.1016/j.aca.2019.02.013(open access article)

    Article  CAS  Google Scholar 

  95. Mafra G, Birk L, Scheid C, Eller S, Brognoli R, de Oliveira TF, Carasek E, Merib J (2020) A straightforward and semiautomated membrane-based method as efficient tool for the determination of cocaine and its metabolites in urine samples using liquid chromatography coupled to quadrupole time-of-flight-mass spectrometry. J Chromatogr A 21:461088. https://doi.org/10.1016/j.chroma.2020.461088(open access article)

    Article  CAS  Google Scholar 

  96. Ohcho K, Saito K, Kataoka H (2008) Automated analysis of non-steroidal anti-inflammatory drugs in environmental water by on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. J Environ Chem 18:511–520. https://doi.org/10.5985/jec.18.511

    Article  CAS  Google Scholar 

  97. Fleischer H, Drews RR, Janson J, Chinna Patlolla BR, Chu X, Klos M, Thurow K (2016) Application of a dual-arm robot in complex sample preparation and measurement processes. J Lab Autom 21:671–681. https://doi.org/10.1177/2211068216637352(open access article)

    Article  PubMed  Google Scholar 

  98. Medina DAV, Cabal LFR, Lanças FM, Santos-Neto AJ (2019) Sample treatment platform for automated integration of microextraction techniques and liquid chromatography analysis. HardwareX 5:e00056. https://doi.org/10.1016/j.ohx.2019.e00056

    Article  Google Scholar 

  99. Kocúrová L, Balogh IS, Andruch V (2013) Solvent microextraction: a review of recent efforts at automation. Microchem J 110:599–607. https://doi.org/10.1016/j.microc.2013.07.009

    Article  CAS  Google Scholar 

  100. Alexovič M, Horstkotte B, Šrámková I, Solich P, Sabo J (2017) Automation of dispersive liquid-liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in-syringe modes. Trends Analyt Chem 86:39–55. https://doi.org/10.1016/j.trac.2016.10.003

    Article  CAS  Google Scholar 

  101. Drouin N, Kubáň P, Rudaz S, Pedersen-Bjergaard S, Schappler J (2019) Electromembrane extraction: overview of the last decade. Trends Analyt Chem 113:357–363. https://doi.org/10.1016/j.trac.2018.10.024

    Article  CAS  Google Scholar 

  102. Hutchinson JP, Setkova L, Pawliszyn J (2007) Automation of solid-phase microextraction on a 96-well plate format. J Chromatogr A 1149:127–137. https://doi.org/10.1016/j.chroma.2007.02.117

    Article  CAS  PubMed  Google Scholar 

  103. Serenjeh FN, Hashemi P, Ghiasvand AR, Rasolzadeh F, Heydari N, Badiei A (2020) Cooling assisted headspace microextraction by packed sorbent coupled to HPLC for the determination of volatile polycyclic aromatic hydrocarbons in soil. Anal Chim Acta 1125:128–134. https://doi.org/10.1016/j.aca.2020.05.067

    Article  CAS  PubMed  Google Scholar 

  104. Lockwood TE, Talebi M, Minett A, Mills S, Doble PA, Bishop DP (2019) Micro solid-phase extraction for the analysis of per- and polyfluoroalkyl substances in environmental waters. J Chromatogr A 1604:460495. https://doi.org/10.1016/j.chroma.2019.460495

    Article  CAS  PubMed  Google Scholar 

  105. Ciceri D, Perera JM, Stevens GW (2014) The use of microfluidic devices in solvent extraction. J Chem Technol Biotechnol 89:771–786. https://doi.org/10.1002/jctb.4318

    Article  CAS  Google Scholar 

  106. Petersen NJ, Jensen H, Hansen SH, Foss ST, Snakenborg D, Pedersen-Bjergaard S (2010) On-chip electro membrane extraction. Microfluid Nanofluid 9:881–888. https://doi.org/10.1007/s10404-010-0603-6

    Article  CAS  Google Scholar 

  107. Santigosa E, Maspoch S, Payán MR (2019) Liquid phase microextraction integrated into a microchip device for the extraction of fluoroquinolones from urine samples. Microchem J 145:280–286. https://doi.org/10.1016/j.microc.2018.10.051

    Article  CAS  Google Scholar 

  108. Payán MR, Murillo ES, Coello J, López MÁB (2018) A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions. J Chromatogr A 1556:29–36. https://doi.org/10.1016/j.chroma.2018.04.051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Coordination of Improvement of Personal Higher Education, Brazil [CAPES—Finance Code 001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josias O. Merib or Tiago F. Oliveira.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birk, L., Santos, S.O., Eller, S. et al. Determinations of new psychoactive substances in biological matrices with focus on microextraction techniques: a review of fundamentals and state-of-the-art extraction methods. Forensic Toxicol 39, 350–367 (2021). https://doi.org/10.1007/s11419-021-00582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-021-00582-x

Keywords

Navigation