Skip to main content
Log in

A new method for high-resolution and high-precision analysis of flunitrazepam and 7-aminoflunitrazepam in human body fluids using a Monolithic SPE SpinTip and UPLC–Q-ToF–MS

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

Forensic toxicological analyses of drugs and their metabolites in human specimens usually require extractive pretreatment for successful analysis of substances from the matrix. In the present study, a high-throughput method was developed to analyze flunitrazepam, 7-aminoflunitrazepam, 7-acetamidoflunitrazepam, 7-acetamido-3-hydroxyflunitrazepam, and 3-hydroxyflunitrazepam in human plasma and urine samples using a new Monolithic C18 gel-packed SpinTip and ultra-performance liquid chromatography (UPLC)–quadrupole time-of-flight (Q-ToF) mass spectrometry (MS).

Methods

Plasma (20 µL) or urine (100 µL) samples spiked with each component were extracted using a Monolithic C18 SPE SpinTip and quantified by UPLC–Q-Tof–MS with positive-ion electrospray ionization (ESI).

Results

Good separation, with clear peak shapes of flunitrazepam and its metabolites, was achieved within an analysis time of 6 min, including the extraction time. Recoveries of flunitrazepam and 7-aminoflunitrazepam for plasma and urine samples were 93.5–118% and 97.7–109%, respectively. The regression equations for flunitrazepam and 7-aminoflunitrazepam showed excellent linearity in the range of 0.5–250 ng/mL for plasma and 0.4–500 ng/mL for urine, with detection limits of 0.2–0.5 ng/mL. Intra- and inter-day coefficients of variations for two drugs are smaller than 13.5%. The accuracy of quantitation was 89–110%.

Conclusions

The method was successfully applied to determine the level of flunitrazepam and its metabolites in human plasma and urine, respectively, after oral administration to a volunteer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mihic SJ, Mayfield J, Harris RA (2017) Hypnotics and sedatives. In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) Goodman & Gilman’s: the pharmacological basis of therapeutics, 13th edn. McGraw-Hill, New York, pp 339–354

    Google Scholar 

  2. Olfson M, King M, Schoenbaum M (2015) Benzodiazepine use in the United States. JAMA Psychiatry 72:136–142. https://doi.org/10.1001/jamapsychiatry.2014.1763

    Article  PubMed  Google Scholar 

  3. Windle A, Elliot E, Duszynski K, Moore V (2007) Benzodiazepine prescribing in elderly Australian general practice patients. Aust N Z J Public Health 31:379–381. https://doi.org/10.1111/j.1753-6405.2007.00091.x

    Article  PubMed  Google Scholar 

  4. Baselt RC (2017) Disposition of toxic drugs and chemicals in man, 11th edn. Biomedical Publications, Seal Beach, pp 908–911

    Google Scholar 

  5. Baia TC, Campos A, Wanderley BM, Gama RA (2016) The effect of flunitrazepam (Rohypnol®) on the development of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) and its implications for forensic entomology. J Forensic Sci 61:1112–1115. https://doi.org/10.1111/1556-4029.13104

    Article  CAS  PubMed  Google Scholar 

  6. ElSohly MA, Salamone SJ (1999) Prevalence of drugs used in cases of alleged sexual assault. J Anal Toxicol 23:141–146. https://doi.org/10.1093/jat/23.3.141

    Article  CAS  PubMed  Google Scholar 

  7. Anglin D, Spears KL, Hutson HR (1997) Flunitrazepam and its involvement in date or acquaintance rape. Acad Emerg Med 4:323–326. https://doi.org/10.1111/j.1553-2712.1997.tb03557.x

    Article  CAS  PubMed  Google Scholar 

  8. de Bairros AV, de Almeida RM, Pantaleão L, Barcellos T, de Silva SM, Yonamine M (2015) Determination of low levels of benzodiazepines and their metabolites in urine by hollow-fiber liquid-phase microextraction (LPME) and gas chromatography–mass spectrometry (GC–MS). J Chromatogr B 975:24–33. https://doi.org/10.1016/j.jchromb.2014.10.040

    Article  CAS  Google Scholar 

  9. Hackett J, Elian AA (2006) Extraction and analysis of flunitrazepam/7-aminoflunitrazepam in blood and urine by LC–PDA and GC–MS using butyl SPE columns. Forensic Sci Int 157:156–162. https://doi.org/10.1016/j.forsciint.2005.03.019

    Article  CAS  PubMed  Google Scholar 

  10. Cui S, Tan S, Ouyang G, Pawliszyn J (2009) Automated polyvinylidene difluoride hollow fiber liquid-phase microextraction of flunitrazepam in plasma and urine samples for gas chromatography/tandem mass spectrometry. J Chromatogr A 1216:2241–2247. https://doi.org/10.1016/j.chroma.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen H, Nau DR (2000) Rapid method for the solid-phase extraction and GC–MS analysis of flunitrazepam and its major metabolites in urine. J Anal Toxicol 24:37–45. https://doi.org/10.1093/jat/24.1.37

    Article  CAS  PubMed  Google Scholar 

  12. Matsuta S, Nakanishi K, Miki A, Zaitsu K, Shima N, Kamata T, Nishioka H, Katagi M, Tatsuno M, Tsuboi K, Tsuchihashi H, Suzuki K (2013) Development of a simple one-pot extraction method for various drugs and metabolites of forensic interest in blood by modifying the QuEChERS method. Forensic Sci Int 232:40–45. https://doi.org/10.1016/j.forsciint.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  13. Marchi I, Schappler J, Veuthey JL, Rudaz S (2009) Development and validation of a liquid chromatography-atmospheric pressure photoionization-mass spectrometry method for the quantification of alprazolam, flunitrazepam, and their main metabolites in haemolysed blood. J Chromatogr B 877:2275–2283. https://doi.org/10.1016/j.jchromb.2008.12.002

    Article  CAS  Google Scholar 

  14. Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Watanabe K, Suzuki O (2015) Postmortem distribution of flunitrazepam and its metabolite 7-aminoflunitrazepam in body fluids and solid tissues in an autopsy case: usefulness of bile for their detection. Leg Med 17:394–400. https://doi.org/10.1016/j.legalmed.2015.06.002

    Article  CAS  Google Scholar 

  15. Wu YR, Liu HY, Lin SL, Fuh MR (2018) Quantification of 7-aminoflunitrazepam in human urine by polymeric monolith-based capillary liquid chromatography coupled to tandem mass spectrometry. Talanta 176:293–298. https://doi.org/10.1016/j.talanta.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  16. Lee HH, Lee JF, Lin SY, Lin YY, Wu CF, Wu MT, Chen BH (2013) Simultaneous quantification of urine flunitrazepam, nimetazepam and nitrazepam by using liquid chromatography tandem mass spectrometry. Clin Chim Acta 420:134–139. https://doi.org/10.1016/j.cca.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  17. Forsman M, Nyström I, Roman M, Berglund L, Ahlner J, Kronstrand R (2009) Urinary detection times and excretion patterns of flunitrazepam and its metabolites after a single oral dose. J Anal Toxicol 33:491–501. https://doi.org/10.1093/jat/33.8.491

    Article  CAS  PubMed  Google Scholar 

  18. Erve JC, Demaio W, Talaat RE (2008) Rapid metabolite identification with sub parts-per-million mass accuracy from biological matrices by direct infusion nanoelectrospray ionization after clean-up on a ZipTip and LTQ/Orbitrap mass spectrometry. Rapid Commun Mass Spectrom 22:3015–3026. https://doi.org/10.1002/rcm.3702

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Stupak J, Zheng J, Keller BO, Brix BJ, Fliegel L, Li L (2004) Open tubular immobilized metal ion affinity chromatography combined with MALDI MS and MS/MS for identification of protein phosphorylation sites. Anal Chem 76:4223–4232. https://doi.org/10.1021/ac035231d

    Article  CAS  PubMed  Google Scholar 

  20. Kumazawa T, Hasegawa C, Lee XP, Sato K (2010) New and unique methods of solid-phase extraction for use before instrumental analysis of xenobiotics in human specimens. Forensic Toxicol 28:61–68. https://doi.org/10.1007/s11419-010-0097-7

    Article  CAS  Google Scholar 

  21. Lee XP, Hasegawa C, Kumazawa T, Shinmen N, Shoji Y, Seno H, Sato K (2008) Determination of tricyclic antidepressants in human plasma using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Sep Sci 31:2265–2271. https://doi.org/10.1002/jssc.200700627

    Article  CAS  PubMed  Google Scholar 

  22. Kumazawa T, Hasegawa C, Lee XP, Hara K, Seno H, Suzuki O, Sato K (2007) Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal 44:602–607. https://doi.org/10.1016/j.jpba.2006.12.025

    Article  CAS  PubMed  Google Scholar 

  23. Hasegawa C, Kumazawa T, Lee XP, Fujishiro M, Kuriki A, Marumo A, Seno H, Sato K (2006) Simultaneous determination of ten antihistamine drugs in human plasma using pipette tip solid-phase extraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20:537–543. https://doi.org/10.1002/rcm.2335

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Tang Y, Shan C, Chai C, Zhou Z, Shi X, Ding N, Wang J, Lin L, Tan R (2018) A comprehensive in vitro and in vivo metabolism study of hydroxysafflor yellow A. J Mass Spectrom 53:99–108. https://doi.org/10.1002/jms.4041

    Article  CAS  PubMed  Google Scholar 

  25. Caboni P, Liori B, Kumar A, Santoru ML, Asthana S, Pieroni E, Fais A, Era B, Cacace E, Ruggiero V, Atzori L (2014) Metabolomics analysis and modeling suggest a lysophosphocholines-PAF receptor interaction in fibromyalgia. PLoS One 9:e107626. https://doi.org/10.1371/journal.pone.0107626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Chen Y, Subramanian R (2014) Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 86:1202–1209. https://doi.org/10.1021/ac403385y

    Article  CAS  PubMed  Google Scholar 

  27. Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, Luque de Castro MD (2014) Optimization study for metabolomics analysis of human sweat by liquid chromatography–tandem mass spectrometry in high resolution mode. J Chromatogr A 1333:70–78. https://doi.org/10.1016/j.chroma.2014.01.071

    Article  CAS  PubMed  Google Scholar 

  28. Broecker S, Herre S, Pragst F (2012) General unknown screening in hair by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS). Forensic Sci Int 218:68–81. https://doi.org/10.1016/j.forsciint.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  29. Food and Drug Administration. Guidance for industry: bioanalytical method validation, U.S. Department of Health and Human Services, FDA, Center for Drug Evaluation and Research. 2018. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Accessed 5 Dec 2018

  30. Shafaei A, Halim NHA, Zakaria N, Ismail Z (2017) Analysis of free amino acids in different extracts of orthosiphon stamineus leaves by high-performance liquid chromatography combined with solid-phase extraction. Pharmacogn Mag 13:385–391. https://doi.org/10.4103/0973-1296.216337

    Article  Google Scholar 

  31. Marumo A, Kumazawa T, Lee XP, Hasegawa C, Sato K (2013) SpinTip solid-phase extraction and HILIC-MS-MS for quantitative determination of methamphetamine and amphetamine in human plasma. J Liq Chromatogr Relat T 37:420–432. https://doi.org/10.1080/10826076.2012.745145

    Article  CAS  Google Scholar 

  32. Matsuura K, Ohmori T, Nakamura M, Itoh Y, Hirano K (2008) A simple and rapid determination of valproic acid in human plasma using a non-porous silica column and liquid chromatography with tandem mass spectrometric detection. Biomed Chromatogr 22:387–393. https://doi.org/10.1002/bmc.944

    Article  CAS  PubMed  Google Scholar 

  33. Huang Z, Zhang S (2003) Confirmation of amphetamine, methamphetamine, MDA and MDMA in urine samples using disk solid-phase extraction and gas chromatography–mass spectrometry after immunoassay screening. J Chromatogr B 792:241–247. https://doi.org/10.1016/S1570-0232(03)00269-1

    Article  CAS  Google Scholar 

  34. Uges DRA (2011) Hospital toxicology: interpretation and advice. In: Moffat AC, Osselton MD, Widdop B, Watts J (eds) Clarke’s analysis of drugs and poisons, 4th edn. Pharmaceutical, London, pp 31–57

    Google Scholar 

  35. Winek CL, Wahba WW, Winek CL Jr, Balzer TW (2001) Drug and chemical blood-level data. Forensic Sci Int 122:107–123. https://doi.org/10.1016/s0379-0738(01)00483-2

    Article  CAS  PubMed  Google Scholar 

  36. Snyder H, Schwenzer KS, Pearlman R, McNally AJ, Tsilimidos M, Salamone SJ, Brenneisen R, ElSohly MA, Feng S (2001) Serum and urine concentrations of flunitrazepam and metabolites, after a single oral dose, by immunoassay and GC–MS Format: abstract. J Anal Toxicol 25:699–704. https://doi.org/10.1093/jat/25.8.699

    Article  CAS  PubMed  Google Scholar 

  37. Bogusz MJ, Maier RD, Krüger KD, Früchtnicht W (1998) Determination of flunitrazepam and its metabolites in blood by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr B 713:361–369. https://doi.org/10.1016/S0378-4347(98)00207-2

    Article  CAS  Google Scholar 

  38. Namera A, Makita R, Saruwatari T, Hatano A, Shiraishi H, Nagao M (2012) Acute intoxication caused by overdose of flunitrazepam and triazolam: high concentration of metabolites detected at autopsy examination. Am J Forensic Med Pathol 33:293–296. https://doi.org/10.1097/PAF.0b013e31820f1514

    Article  PubMed  Google Scholar 

  39. Bogusz MJ (2000) Liquid chromatography–mass spectrometry as a routine method in forensic sciences: a proof of maturity. J Chromatogr B 748:3–19. https://doi.org/10.1016/S0378-4347(00)00461-8

    Article  CAS  Google Scholar 

  40. Druid H, Holmgren P (1997) A compilation of fatal and control concentrations of drugs in postmortem femoral blood. J Forensic Sci 42:79–87. https://doi.org/10.1520/JFS14071J

    Article  PubMed  Google Scholar 

  41. Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, Shah VP, Skelly JP, Swann PG, Weiner R (2007) Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res 24:1962–1973. https://doi.org/10.1007/s11095-007-9291-7

    Article  CAS  PubMed  Google Scholar 

  42. Scientific Working Group for Forensic Toxicology (SWGTOX) (2013) Standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474. https://doi.org/10.1093/jat/bkt054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), KAKENHI Grant (C) 24590865.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Pen Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

Ethical approval

This study was approved by the Ethics Committee of Showa University School of Medicine (no. 861). The obtainment of blood and urine samples from healthy volunteers was approved by the Ethics Committees of Showa University School of Medicine (no. 1249).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 387 kb)

11419_2019_471_MOESM2_ESM.doc

Fig. S1. Appearance of a Monolithic C18 gel-packed SPE SpinTip and electron micrograph of the monolithic silica gel. The electron micrograph of the monolithic silica gel is used with permission from GL Sciences, Tokyo, Japan (DOC 57 kb)

11419_2019_471_MOESM3_ESM.doc

Fig. S2. Comparison of XICs at different pH from human plasma and urine 1 h after oral administration of flunitrazepam (1 mg). The pH was adjusted to 2.4 with 10 µL of 1M HCl, 6.9 with 10 µL of ultra-pure water, and 10.1 with 10 µL of 10 mM NH4OH (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujishiro, M., Noguchi, A., Lee, XP. et al. A new method for high-resolution and high-precision analysis of flunitrazepam and 7-aminoflunitrazepam in human body fluids using a Monolithic SPE SpinTip and UPLC–Q-ToF–MS. Forensic Toxicol 37, 387–397 (2019). https://doi.org/10.1007/s11419-019-00471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-019-00471-4

Keywords

Navigation