Skip to main content
Log in

Acacetin inhibits myocardial mitochondrial dysfunction by activating PI3K/AKT in SHR rats fed with fructose

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

To explore the effect of acacetin on myocardial mitochondrial dysfunction in spontaneously hypertensive rats (SHR) with insulin resistance (IR), and the possible mechanism. Rapid IR was first induced in fructose-fed SHR, and they were then treated with acacetin (25, 50 mg/kg). After 7 weeks, the rats were tested for hypertension, IR, cardiac function, and mitochondrial damage status. Potential mechanisms of action were explored in terms of oxidative stress, mitochondrial fission and division, apoptosis, and the insulin signaling pathway. Subsequently, the PI3K gene was silenced, after intervention with acacetin (5 μM) for 24 h, and H2O2 was used to stimulate H9c2 for 4 h, it was evaluated whether silencing PI3K would affect the therapeutic effect of acacetin. In SHR fed with fructose, acacetin can improve hypertension, IR, cardiac function (LVEF, LVFS), and mitochondrial damage (mitochondria number, ATP); inhibit oxidative stress (ROS, SOD, Nrf2, Keap1), mitochondrial fission (MFF, Drp1), and myocardial cell apoptosis (apoptosis rate, Bax, Bcl-2, cytochrome c); promote mitochondrial fusion (Mfn2) and activate insulin signaling pathways (PI3K/AKT). However, silencing PI3K inhibited the abovementioned effects of acacetin. In conclusion, acacetin improved myocardial mitochondrial dysfunction through regulating oxidative stress, mitochondrial fission and fusion, and mitochondrial pathway apoptosis mediated by PI3K/AKT signaling pathway in hypertensive rats with IR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Most of he data that support the findings of this study are available in the supplementary material of this article, others are available from the corresponding author upon reasonable request.

References

  1. Liu CY, Zhang W, Ji LN, Wang JG (2019) Comparison between newly diagnosed hypertension in diabetes and newly diagnosed diabetes in hypertension. Diabetol Metab Syndr 11:69

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zheng L, Li B, Lin S, Chen L, Li H (2019) Role and mechanism of cardiac insulin resistance in occurrence of heart failure caused by myocardial hypertrophy. Aging (Albany NY) 11(16):6584–6590

    Article  CAS  PubMed  Google Scholar 

  3. Bouitbir J, Alshaikhali A, Panajatovic MV, Abegg VF, Paech F, Krahenbuhl S (2019) Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib: running title: sunitinib and oxidative stress in hearts. Toxicology 426:152281

    Article  CAS  PubMed  Google Scholar 

  4. Gao J, Zhao L, Wang J, Zhang L, Zhou D, Qu J, Wang H, Yin M, Hong J, Zhao W (2019) C-phycocyanin ameliorates mitochondrial fission and fusion dynamics in ischemic cardiomyocyte damage. Front Pharmacol 10:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin DN, Zhu JG, Ji CB, Chunmei S, Kou CZ, Zhu GZ, Zhang CM, Wang YP, Ni YH, Guo XR (2011) Monoclonal antibody to six transmembrane epithelial antigen of prostate-4 influences insulin sensitivity by attenuating phosphorylation of P13K (P85) and Akt: possible mitochondrial mechanism. J Bioenerg Biomembr 43(3):247–255

    Article  CAS  PubMed  Google Scholar 

  6. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA (2003) Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52(11):2784–2789

    Article  CAS  PubMed  Google Scholar 

  7. Xu PT, Song Z, Zhang WC, Jiao B, Yu ZB (2015) Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle. Biomed Res Int 2015:291987

    PubMed  PubMed Central  Google Scholar 

  8. Chi M, Ye Y, Zhang XD, Chen J (2014) Insulin induces drug resistance in melanoma through activation of the PI3K/Akt pathway. Drug Des Devel Ther 8:255–262

    PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, Zhang Q (2013) Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol 17(3):714–720

    Article  CAS  PubMed  Google Scholar 

  10. Kim SM, Park YJ, Shin MS, Kim HR, Kim MJ, Lee SH, Yun SP, Kwon SH (2017) Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg Med Chem Lett 27(23):5207–5212

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Yang L, Wu HJ, Chen KH, Lin F, Li G, Sun HY, Xiao GS, Wang Y, Li GR (2016) Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury. Sci Rep 6:36435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akash MSH, Sabir S, Rehman K (2020) Bisphenol A-induced metabolic disorders: from exposure to mechanism of action. Environ Toxicol Pharmacol 77:103373

    Article  CAS  PubMed  Google Scholar 

  13. Holditch SJ, Schreiber CA, Nini R, Tonne JM, Peng KW, Geurts A, Jacob HJ, Burnett JC, Cataliotti A, Ikeda Y (2015) B-type natriuretic peptide deletion leads to progressive hypertension, associated organ damage, and reduced survival: novel model for human hypertension. Hypertension 66(1):199–210

    Article  CAS  PubMed  Google Scholar 

  14. Webster KA (2008) Stress hyperglycemia and enhanced sensitivity to myocardial infarction. Curr Hypertens Rep 10(1):78–84

    Article  CAS  PubMed  Google Scholar 

  15. Mozaffari MS, Schaffer SW (2008) Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome. Obesity (Silver Spring) 16(10):2253–2258

    Article  CAS  PubMed  Google Scholar 

  16. Zhi H, Wang H, Li T, Pin F (2015) Correlated analysis and pathological study on insulin resistance and cardiovascular endocrine hormone in elderly hypertension patients. Diabetes Metab Syndr 9(2):67–70

    Article  PubMed  Google Scholar 

  17. Alam MA, Kauter K, Brown L (2013) Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients 5(3):637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doroshchuk AD, Postnov A, Afanas’eva GV, Budnikov E, Postnov IuV (2004) Decreased ATP-synthesis ability of brain mitochondria in spontaneously hypertensive rats. Kardiologiia 44(3):64–65

    CAS  PubMed  Google Scholar 

  19. Villegas-Romero M, Castrejon-Tellez V, Perez-Torres I, Rubio-Ruiz ME (2018) Short-term exposure to high sucrose levels near weaning has a similar long-lasting effect on hypertension as a long-term exposure in rats. Nutrients 10(6):728

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thorwald M, Rodriguez R, Lee A, Martinez B, Peti-Peterdi J, Nakano D, Nishiyama A, Ortiz RM (2018) Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats. Redox Biol 14:371–378

    Article  CAS  PubMed  Google Scholar 

  21. Roy M, Reddy PH, Iijima M, Sesaki H (2015) Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 33:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Hattab AW, Suleiman J, Almannai M, Scaglia F (2018) Mitochondrial dynamics: biological roles, molecular machinery, and related diseases. Mol Genet Metab 125(4):315–321

    Article  CAS  PubMed  Google Scholar 

  23. Amiott EA, Lott P, Soto J, Kang PB, McCaffery JM, DiMauro S, Abel ED, Flanigan KM, Lawson VH, Shaw JM (2008) Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Exp Neurol 211(1):115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang P, Galloway CA, Yoon Y (2011) Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS ONE 6(5):e20655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiefel BR, Gilson PR, Beech PL (2006) Cell biology of mitochondrial dynamics. Int Rev Cytol 254:151–213

    Article  CAS  PubMed  Google Scholar 

  26. Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256(1–2):141–155

    Article  PubMed  Google Scholar 

  27. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14(2):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118(9):2992–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng P, Ma C, Wan S, Jin W, Gao Y, Huang T, Cheng Q, Ye C (2018) Inhibition of p53 relieves insulin resistance in fetal growth restriction mice with catch-up growth via activating IGFBP3/IGF-1/IRS-1/Akt signaling pathway. J Nanosci Nanotechnol 18(6):3925–3935

    Article  CAS  PubMed  Google Scholar 

  30. Zhao X, Zhang F, Wang Y (2017) Proteomic analysis reveals xuesaitong injection attenuates myocardial ischemia/reperfusion injury by elevating pyruvate dehydrogenase-mediated aerobic metabolism. Mol BioSyst 13(8):1504–1511

    Article  CAS  PubMed  Google Scholar 

  31. Thummasorn S, Kumfu S, Chattipakorn S, Chattipakorn N (2011) Granulocyte-colony stimulating factor attenuates mitochondrial dysfunction induced by oxidative stress in cardiac mitochondria. Mitochondrion 11(3):457–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author of this article wishes to thank the National Key Research and Development Program (The Major Project for Research of the Modernization of TCM): (2019YFC1708802), Major Science and Technology Projects of Henan Province (171100310500), Henan Province high-level personnel special support “ZhongYuan One Thousand People Plan”-Zhongyuan Leading Talent (ZYQR201810080) , the Engineering and Technology Center for Chinese Medicine Development of Henan Province and the Ph.D. Research Funds of Henan University of Chinese Medicine (RSBSJJ2018-04).

Funding

This work was supported by the National Key Research and Development Program (The Major Project for Research of the Modernization of TCM): (2019YFC1708802), Major Science and Technology Projects of Henan Province (171100310500), Henan Province high-level personnel special support “ZhongYuan One Thousand People Plan”-Zhongyuan Leading Talent (ZYQR201810080), the Engineering and Technology Center for Chinese Medicine Development of Henan Province and the Ph.D. Research Funds of Henan University of Chinese Medicine (RSBSJJ2018-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Zheng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2973 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, P., Zhang, Q., Fu, Y. et al. Acacetin inhibits myocardial mitochondrial dysfunction by activating PI3K/AKT in SHR rats fed with fructose. J Nat Med 77, 262–275 (2023). https://doi.org/10.1007/s11418-022-01666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01666-7

Keywords

Navigation