Skip to main content

Advertisement

Log in

Hawaiian native herb Mamaki prevents dementia by ameliorating neuropathology and repairing neurons in four different mouse models of neurodegenerative diseases

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases including Alzheimer’s disease, frontotemporal dementia, and dementia with Lewy bodies are age-related disorders and the main cause of dementia. They are characterized by the cerebral accumulation of Aβ, tau, α-synuclein, and TDP-43. Because the accumulation begins decades before disease onset, treatment should be started in the preclinical stage. Such intervention would be long-lasting, and therefore, prophylactic agents should be safe, non-invasively taken by the patients, and inexpensive. In addition, the agents should be broadly effective against etiologic proteins and capable of repairing neurons damaged by toxic oligomers. These requirements are difficult to meet with single-ingredient pharmaceuticals but may be feasible by taking proper diets composed of multiple ingredients. As a source of such diets, we focused on the Hawaiian native herb Mamaki. From its dried leaves and fruits, we made three preparations: hot water extract of the leaves, non-extracted simple crush powder of the leaves, and simple crush powder of the fruits, and examined their effects on the cognitive function and neuropathologies in four different mouse models of neurodegenerative dementia. Hot water extract of the leaves attenuated neuropathologies, restored synaptophysin levels, suppressed microglial activation, and improved memory when orally administered for 1 month. Simply crushed leaf powder showed a higher efficacy, but simply crushed fruit powder displayed the strongest effects. Moreover, the fruit powder significantly enhanced the levels of brain-derived neurotrophic factor expression and neurogenesis, indicating its ability to repair neurons. These results suggest that crushed Mamaki leaves and fruits are promising sources of dementia-preventive diets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Datasets used for analysis and materials are available from the corresponding author upon reasonable request.

References

  1. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6. https://doi.org/10.1038/nature20411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81. https://doi.org/10.1038/s41582-019-0244-7.

    Article  PubMed  Google Scholar 

  3. Forrest SL, Kovacs GG. Current concepts of mixed pathologies in neurodegenerative diseases. Can J Neurol Sci. 2022;31:1–17. https://doi.org/10.1017/cjn.2022.34.

    Article  Google Scholar 

  4. Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol. 2022;214:102270. https://doi.org/10.1016/j.pneurobio.2022.102270.

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J Neurochem. 2020;154(6):583–97. https://doi.org/10.1111/jnc.15007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gutierrez BA, Limon A. Synaptic disruption by soluble oligomers in patients with Alzheimer’s and Parkinson’s disease. Biomedicines. 2022;10(7):1743. https://doi.org/10.3390/biomedicines10071743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaunmuktane Z, Brandner S. Invited review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol. 2020;46(6):522–45. https://doi.org/10.1111/nan.12592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Umeda T, Uekado R, Shigemori K, Eguchi H, Tomiyama T. Nasal rifampicin halts the progression of tauopathy by inhibiting Tau oligomer propagation in Alzheimer brain extract-injected mice. Biomedicines. 2022;10(2):297. https://doi.org/10.3390/biomedicines10020297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. https://doi.org/10.1016/S1474-4422(12)70291-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ossenkoppele R, PichetBinette A, Groot C, Smith R, Strandberg O, Palmqvist S, Stomrud E, Tideman P, Ohlsson T, Jögi J, Johnson K, Sperling R, Dore V, Masters CL, Rowe C, Visser D, van Berckel BNM, van der Flier WM, Baker S, Jagust WJ, Wiste HJ, Petersen RC, Jack CR Jr, Hansson O. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat Med. 2022;28(11):2381–7. https://doi.org/10.1038/s41591-022-02049-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee J, Howard RS, Schneider LS. The current landscape of prevention trials in dementia. Neurotherapeutics. 2022;19(1):228–47. https://doi.org/10.1007/s13311-022-01236-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rafii MS, Sperling RA, Donohue MC, Zhou J, Roberts C, Irizarry MC, Dhadda S, Sethuraman G, Kramer LD, Swanson CJ, Li D, Krause S, Rissman RA, Walter S, Raman R, Johnson KA, Aisen PS. The AHEAD 3–45 study: Design of a prevention trial for Alzheimer’s disease. Alzheimers Dement. 2022. https://doi.org/10.1002/alz.12748

  13. Chun MN. Mamaki. In: Native Hawaiian medicines. Honolulu, HI: First People’s Productions; 1994; 216–217.

  14. Kartika H, Li QX, Wall MM, Nakamoto ST, Iwaoka WT. Major phenolic acids and total antioxidant activity in Mamaki leaves. Pipturus albidus J Food Sci. 2007;72(9):S696-701. https://doi.org/10.1111/j.1750-3841.2007.00530.x.

    Article  CAS  PubMed  Google Scholar 

  15. Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green tea catechins attenuate neurodegenerative diseases and cognitive deficits. Molecules. 2022;27(21):7604. https://doi.org/10.3390/molecules27217604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules. 2022;12(3):371. https://doi.org/10.3390/biom12030371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Cai MY, Li Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience. 2009;159(4):1208–15. https://doi.org/10.1016/j.neuroscience.2009.02.008.

    Article  CAS  PubMed  Google Scholar 

  18. Yoo KY, Choi JH, Hwang IK, Lee CH, Lee SO, Han SM, Shin HC, Kang IJ, Won MH. (-)-Epigallocatechin-3-gallate increases cell proliferation and neuroblasts in the subgranular zone of the dentate gyrus in adult mice. Phytother Res. 2010;24(7):1065–70. https://doi.org/10.1002/ptr.3083.

    Article  CAS  PubMed  Google Scholar 

  19. Socała K, Szopa A, Serefko A, Poleszak E, Wlaź P. Neuroprotective effects of coffee bioactive compounds: A review. Int J Mol Sci. 2020;22(1):107. https://doi.org/10.3390/ijms22010107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao L, Li X, Meng S, Ma T, Wan L, Xu S. Chlorogenic acid alleviates Aβ25–35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des Devel Ther. 2020;14:1705–16. https://doi.org/10.2147/DDDT.S235969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Dilnashin H, Singh R, Singh SP. Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a Parkinsonian mouse model. Oxid Med Cell Longev. 2020;2020:6571484. https://doi.org/10.1155/2020/6571484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu D, Wang H, Zhang Y, Zhang Z. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des Devel Ther. 2020;14:51–60. https://doi.org/10.2147/DDDT.S228751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tahir MS, Almezgagi M, Zhang Y, Bashir A, Abdullah HM, Gamah M, Wang X, Zhu Q, Shen X, Ma Q, Ali M, Solangi ZA, Malik WS, Zhang W. Mechanistic new insights of flavonols on neurodegenerative diseases. Biomed Pharmacother. 2021;137:111253. https://doi.org/10.1016/j.biopha.2021.111253.

    Article  CAS  PubMed  Google Scholar 

  24. Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, Zhang H, Wang YJ, Liu RT. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res. 2014;1(264):173–80. https://doi.org/10.1016/j.bbr.2014.02.002.

    Article  CAS  Google Scholar 

  25. Sun XY, Li LJ, Dong QX, Zhu J, Huang YR, Hou SJ, Yu XL, Liu RT. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2021;18(1):131. https://doi.org/10.1186/s12974-021-02182-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moghbelinejad S, Nassiri-Asl M, Farivar TN, Abbasi E, Sheikhi M, Taghiloo M, Farsad F, Samimi A, Hajiali F. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett. 2014;224(1):108–13. https://doi.org/10.1016/j.toxlet.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  27. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. 1997;94(24):13287–92. https://doi.org/10.1073/pnas.94.24.13287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Dam D, D’Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP. Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci. 2003;17(2):388–96. https://doi.org/10.1046/j.1460-9568.2003.02444.x.

    Article  PubMed  Google Scholar 

  29. Umeda T, Sakai A, Shigemori K, Yokota A, Kumagai T, Tomiyama T. Oligomer-targeting prevention of neurodegenerative dementia by intranasal rifampicin and resveratrol combination - A preclinical study in model mice. Front Neurosci. 2021;13(15):763476. https://doi.org/10.3389/fnins.2021.763476.

    Article  Google Scholar 

  30. Umeda T, Yamashita T, Kimura T, Ohnishi K, Takuma H, Ozeki T, Takashima A, Tomiyama T, Mori H. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice. Am J Pathol. 2013;183(1):211–25. https://doi.org/10.1016/j.ajpath.2013.03.015.

    Article  CAS  PubMed  Google Scholar 

  31. Umeda T, Eguchi H, Kunori Y, Matsumoto Y, Taniguchi T, Mori H, Tomiyama T. Passive immunotherapy of tauopathy targeting pSer413-tau: A pilot study in mice. Ann Clin Transl Neurol. 2015;2(3):241–55. https://doi.org/10.1002/acn3.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL. Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 –> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A. 2002;99(13):8968–73. https://doi.org/10.1073/pnas.132197599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Umeda T, Hatanaka Y, Sakai A, Tomiyama T. Nasal rifampicin improves cognition in a mouse model of dementia with Lewy bodies by reducing α-Synuclein oligomers. Int J Mol Sci. 2021;22:8453. https://doi.org/10.3390/ijms22168453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Pattamatta A, Zu T, Reid T, Bardhi O, Borchelt DR, Yachnis AT, Ranum LP. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron. 2016;90(3):521–34. https://doi.org/10.1016/j.neuron.2016.04.005.

    Article  CAS  PubMed  Google Scholar 

  35. Hatanaka Y, Umeda T, Shigemori K, Takeuchi T, Nagai Y, Tomiyama T. C9orf72 hexanucleotide repeat expansion-related neuropathology is attenuated by nasal rifampicin in mice. Biomedicines. 2022;10(5):1080. https://doi.org/10.3390/biomedicines10051080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muzio L, Viotti A, Martino G. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy. Front Neurosci. 2021;15:742065. https://doi.org/10.3389/fnins.2021.742065.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci. 2020;21(20):7777. https://doi.org/10.3390/ijms21207777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet. 2017;174(1):93–112. https://doi.org/10.1002/ajmg.b.32429.

    Article  CAS  PubMed  Google Scholar 

  39. Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;25(40):21–49. https://doi.org/10.1146/annurev-neuro-072116-031347.

    Article  CAS  Google Scholar 

  40. Nandwana V, Nandwana NK, Das Y, Saito M, Panda T, Das S, Almaguel F, Hosmane NS, Das BC. The role of microbiome in brain development and neurodegenerative diseases. Molecules. 2022;27(11):3402. https://doi.org/10.3390/molecules27113402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The microbiota-gut-brain axis in psychiatric disorders. Int J Mol Sci. 2022;23(19):11245. https://doi.org/10.3390/ijms231911245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Puhlmann ML, de Vos WM. Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Front Immunol. 2022;13:954845. https://doi.org/10.3389/fimmu.2022.954845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cuervo-Zanatta D, Syeda T, Sánchez-Valle V, Irene-Fierro M, Torres-Aguilar P, Torres-Ramos MA, Shibayama-Salas M, Silva-Olivares A, Noriega LG, Torres N, Tovar AR, Ruminot I, Barros LF, García-Mena J, Perez-Cruz C. Dietary fiber modulates the release of gut bacterial products preventing cognitive decline in an Alzheimer’s mouse model. Cell Mol Neurobiol. 2022: https://doi.org/10.1007/s10571-022-01268-7

  44. Kartika H, Shido J, Nakamoto ST, Li QX, Iwaoka WT. Nutrient and mineral composition of dried Mamaki leaves (Pipturus albidus) and infusions. J Food Composition Anal. 2011;24(1):44–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ayumi Yokota, Yu Masumoto, and Yuki Kinjo for technical assistance, and Peter Karagiannis for reading the manuscript.

Funding

This study was supported by funding from Cerebro Pharma Inc., Osaka, Japan.

Author information

Authors and Affiliations

Authors

Contributions

T.U. performed the experiments, analyzed the data, and prepared the figures. K.S. and R.U. carried out the experiments. K.M. prepared the materials. T.T. designed the study, performed the experiments, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Takami Tomiyama.

Ethics declarations

Ethics approval

All animal experiments were approved by the ethics committee of Osaka Metropolitan University and performed in accordance with the Guide for Animal Experimentation, Osaka Metropolitan University.

Competing interests

T.T. and K.M. are the founders of Cerebro Pharma Inc., and T.U. is a member of that company. The company funded this study and applied together with Osaka Metropolitan University for a patent on Mamaki. The other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 810 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeda, T., Shigemori, K., Uekado, R. et al. Hawaiian native herb Mamaki prevents dementia by ameliorating neuropathology and repairing neurons in four different mouse models of neurodegenerative diseases. GeroScience 46, 1971–1987 (2024). https://doi.org/10.1007/s11357-023-00950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00950-y

Keywords

Navigation