Skip to main content
Log in

Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

As we age, the ability to regenerate and repair skeletal muscle damage declines, partially due to increasing dysfunction of muscle resident stem cells—satellite cells (SC). Recent evidence implicates cellular senescence, which is the irreversible arrest of proliferation, as a potentiator of SC impairment during aging. However, little is known about the role of senescence in SC, and there is a large discrepancy in senescence classification within skeletal muscle. The purpose of this study was to develop a model of senescence in skeletal muscle myoblasts and identify how common senescence-associated biomarkers respond. Low-passage C2C12 myoblasts were treated with bleomycin or vehicle and then evaluated for cytological and molecular senescence markers, proliferation status, cell cycle kinetics, and differentiation potential. Bleomycin treatment caused double-stranded DNA breaks, which upregulated p21 mRNA and protein, potentially through NF-κB and senescence-associated super enhancer (SASE) signaling (p < 0.01). Consequently, cell proliferation was abruptly halted due to G2/M-phase arrest (p < 0.01). Bleomycin-treated myoblasts displayed greater senescence-associated β-galactosidase staining (p < 0.01), which increased over several days. These myoblasts remained senescent following 6 days of differentiation and had significant impairments in myotube formation (p < 0.01). Furthermore, our results show that senescence can be maintained despite the lack of p16 gene expression in C2C12 myoblasts. In conclusion, bleomycin treatment provides a valid model of damage-induced senescence that was associated with elevated p21, reduced myoblast proliferation, and aberrant cell cycle kinetics, while confirming that a multi-marker approach is needed for the accurate classification of senescence within skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peake J, Gatta PD, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol-Regul, Integr Comp Physiol. 2010;298:R1485-95. https://doi.org/10.1152/ajpregu.00467.2009.

    Article  CAS  PubMed  Google Scholar 

  2. Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V. Regenerative potential of human skeletal muscle during aging. Aging Cell. 2002;1:132–9. https://doi.org/10.1046/J.1474-9728.2002.00017.X.

    Article  CAS  PubMed  Google Scholar 

  3. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci. 2005;118:4813–21. https://doi.org/10.1242/JCS.02602.

    Article  CAS  PubMed  Google Scholar 

  4. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HHCM, van Loon LJC. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007;292:E151–7. https://doi.org/10.1152/ajpendo.00278.2006.

    Article  CAS  PubMed  Google Scholar 

  5. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G. Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J. 2012;26:2509–21. https://doi.org/10.1096/FJ.11-198663.

    Article  CAS  PubMed  Google Scholar 

  6. Snijders T, Parise G. Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care. 2017;20:186–90. https://doi.org/10.1097/MCO.0000000000000360.

    Article  CAS  PubMed  Google Scholar 

  7. Keefe AC, Lawson JA, Flygare SD, Fox ZD, Colasanto MP, Mathew SJ, et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun. 2015;6:7087. https://doi.org/10.1038/ncomms8087.

    Article  CAS  PubMed  Google Scholar 

  8. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. 2015;21:76–80. https://doi.org/10.1038/nm.3710.

    Article  CAS  PubMed  Google Scholar 

  9. Campisi J, D’Adda Di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40. https://doi.org/10.1038/nrm2233.

    Article  CAS  PubMed  Google Scholar 

  10. Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene. 1998;16:1113–23. https://doi.org/10.1038/sj.onc.1201862.

    Article  CAS  PubMed  Google Scholar 

  11. Aravinthan A. Cellular senescence: a hitchhiker’s guide. Hum Cell. 2015;28:51–64. https://doi.org/10.1007/s13577-015-0110-x.

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53. https://doi.org/10.1016/j.tcb.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  13. Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 2017;13:99–113. https://doi.org/10.1080/15548627.2016.1247143.

    Article  CAS  PubMed  Google Scholar 

  14. Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316–21. https://doi.org/10.1038/nature13013.

    Article  CAS  PubMed  Google Scholar 

  15. O’Connor MS, Carlson ME, Conboy IM. Differentiation rather than aging of muscle stem cells abolishes their telomerase activity. Biotechnol Prog. 2009;25:1130–7. https://doi.org/10.1002/BTPR.223.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15:397–408. https://doi.org/10.1038/nrc3960.

    Article  CAS  PubMed  Google Scholar 

  17. Aoshiba K, Tsuji T, Nagai A. Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J. 2003;22:436–43. https://doi.org/10.1183/09031936.03.00011903.

    Article  CAS  PubMed  Google Scholar 

  18. Hecht SM. Bleomycin: new perspectives on the mechanism of action. J Nat Prod. 2000;63:158–68. https://doi.org/10.1021/np990549f.

    Article  CAS  PubMed  Google Scholar 

  19. Chow MS, Liu L V, Solomon EI. Further insights into the mechanism of the reaction of activated bleomycin with DNA. Proc Natl Acad Sci U S A. 2008;105:13241–5https://doi.org/10.1073/pnas.0806378105.

  20. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7https://doi.org/10.1073/pnas.92.20.9363.

  21. Loveland BE, Johns TG, Mackay IR, Vaillant F, Wang ZX, Hertzog PJ. Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochem Int. 1992;27:501–10.

    CAS  PubMed  Google Scholar 

  22. Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8:3. https://doi.org/10.18632/AGING.100871.

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/METH.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  24. Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging. 2012;4:159–65. https://doi.org/10.18632/AGING.100443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mah L-J, El-Osta A, Karagiannis TC. GammaH2AX as a molecular marker of aging and disease. Epigenetics. 2010;5:129–36. https://doi.org/10.4161/epi.5.2.11080.

    Article  CAS  PubMed  Google Scholar 

  26. Dungan CM, Peck BD, Walton RG, Huang Z, Bamman MM, Kern PA, et al. In vivo analysis of γH2AX+ cells in skeletal muscle from aged and obese humans. FASEB J. 2020;34:7018–35. https://doi.org/10.1096/fj.202000111RR.

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, Von Zglinicki T. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009;8:311–23. https://doi.org/10.1111/j.1474-9726.2009.00481.x.

    Article  CAS  PubMed  Google Scholar 

  28. Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, et al. Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle. Cell Rep. 2019;26:3784-3797.e8. https://doi.org/10.1016/J.CELREP.2019.02.105.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki K, Matsumoto M, Katoh Y, Liu L, Ochiai K, Aizawa Y, et al. Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast differentiation. PLoS One. 2020;15:e0236781. https://doi.org/10.1371/journal.pone.0236781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Y, Zhu X, Jia X, Hou W, Zhou G, Ma Z, et al. Phosphorylation of Msx1 promotes cell proliferation through the Fgf9/18-MAPK signaling pathway during embryonic limb development. Nucleic Acids Res. 2020;48:11452–67. https://doi.org/10.1093/NAR/GKAA905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He K, Wu G, Li W-X, Guan D, Lv W, Gong M, et al. A transcriptomic study of myogenic differentiation under the overexpression of PPARγ by RNA-Seq. Sci Rep. 2017;7:15308. https://doi.org/10.1038/s41598-017-14275-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lyu P, Jiang H. RNA-sequencing reveals upregulation and a beneficial role of autophagy in myoblast differentiation and fusion. Cells. 2022;11:3549. https://doi.org/10.3390/cells11223549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sturmlechner I, Sine CC, Jeganathan KB, Zhang C, Fierro Velasco RO, Baker DJ, et al. Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nat Commun. 2022;13:3722. https://doi.org/10.1038/s41467-022-31239-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nicolae CM, O’Connor MJ, Constantin D, Moldovan G-L. NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene. 2018;37:3647–56. https://doi.org/10.1038/s41388-018-0219-y.

    Article  CAS  PubMed  Google Scholar 

  35. Stein GH, Drullinger LF, Soulard A, Dulić V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 1999;19:2109–17. https://doi.org/10.1128/MCB.19.3.2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13:4827. https://doi.org/10.1038/s41467-022-32552-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moiseeva V, Cisneros A, Sica V, Deryagin O, Lai Y, Jung S, et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature. 2023;613:169–78. https://doi.org/10.1038/s41586-022-05535-x.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Habiballa L, Aversa Z, Ng YE, Sakamoto AE, Englund DA, et al. Characterization of cellular senescence in aging skeletal muscle. Nat Aging. 2022;2:601–15. https://doi.org/10.1038/s43587-022-00250-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiche A, le Roux I, von Joest M, Sakai H, Aguín SB, Cazin C, et al. Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell. 2017;20:407-414.e4. https://doi.org/10.1016/j.stem.2016.11.020.

    Article  CAS  PubMed  Google Scholar 

  40. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:e301. https://doi.org/10.1371/JOURNAL.PBIO.0060301.

    Article  PubMed  PubMed Central  Google Scholar 

  41. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37–42. https://doi.org/10.1038/nature16187.

    Article  CAS  PubMed  Google Scholar 

  42. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288:R345–53. https://doi.org/10.1152/ajpregu.00454.2004.

    Article  CAS  PubMed  Google Scholar 

  43. Sharples AP, Al-Shanti N, Lewis MP, Stewart CE. Reduction of myoblast differentiation following multiple population doublings in mouse C2C12 cells: a model to investigate ageing? J Cell Biochem. 2011;112:3773–85. https://doi.org/10.1002/jcb.23308.

    Article  CAS  PubMed  Google Scholar 

  44. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053–62. https://doi.org/10.1016/J.ETP.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  45. Ma A, Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response. Cell Cycle. 2018;17:73. https://doi.org/10.1080/15384101.2017.1403681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. VahidiFerdousi L, Rocheteau P, Chayot R, Montagne B, Chaker Z, Flamant P, et al. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res. 2014;13:492–507. https://doi.org/10.1016/j.scr.2014.08.005.

    Article  CAS  Google Scholar 

  47. Cousin W, Ho ML, Desai R, Tham A, Chen RY, Kung S, et al. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage. PLoS One. 2013;8:e63528. https://doi.org/10.1371/JOURNAL.PONE.0063528.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yanishevsky R, Mendelsohn ML, Mayall BH, Cristofalo VJ. Proliferative capacity and DNA content of aging human diploid cells in culture: a cytophotometric and autoradiographic analysis. J Cell Physiol. 1974;84:165–70. https://doi.org/10.1002/JCP.1040840202.

    Article  CAS  PubMed  Google Scholar 

  49. Gire V, Dulić V. Senescence from G2 arrest, revisited. Cell Cycle. 2015;14:297–304. https://doi.org/10.1080/15384101.2014.1000134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:485. https://doi.org/10.3389/fcell.2021.645593.

    Article  Google Scholar 

  51. Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Dürr P. Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol. 2001;36:1327–47. https://doi.org/10.1016/S0531-5565(01)00105-X.

    Article  CAS  PubMed  Google Scholar 

  52. Mao Z, Ke Z, Gorbunova V, Seluanov A. Replicatively senescent cells are arrested in G1 and G2 phases. Aging (Albany NY). 2012;4:431. https://doi.org/10.18632/AGING.100467.

    Article  CAS  PubMed  Google Scholar 

  53. Shtutman M, Chang BD, Schools GP, Broude EV. Cellular model of p21-induced senescence. Methods Mol Biol. 2017;1534:31. https://doi.org/10.1007/978-1-4939-6670-7_3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. García-Prat L, Muñoz-Cánoves P, Martinez-Vicente M. Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. Autophagy. 2016;12:612–3. https://doi.org/10.1080/15548627.2016.1143211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine. 2017;21:7–13. https://doi.org/10.1016/j.ebiom.2017.03.020.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci. 1995;92:5545–9.https://doi.org/10.1073/PNAS.92.12.5545

  57. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 1995;9. https://doi.org/10.1101/gad.9.8.935.

  58. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1979;1998(282):1497–501. https://doi.org/10.1126/science.282.5393.1497.

    Article  Google Scholar 

  59. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18:7644–55. https://doi.org/10.1038/sj.onc.1203015.

    Article  CAS  PubMed  Google Scholar 

  60. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell. 2003;115:565–76. https://doi.org/10.1016/S0092-8674(03)00895-X.

    Article  CAS  PubMed  Google Scholar 

  61. Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017;9:1867. https://doi.org/10.18632/AGING.101268.

    Article  CAS  PubMed  Google Scholar 

  62. Haga K, Ohno SI, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M, et al. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci. 2007;98:147–54. https://doi.org/10.1111/J.1349-7006.2006.00373.X.

    Article  CAS  PubMed  Google Scholar 

  63. Holt SE, Wright WE, Shay JW. Regulation of telomerase activity in immortal cell lines. Mol Cell Biol. 1996;16:2932–9. https://doi.org/10.1128/MCB.16.6.2932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell. 2010;7:198–213. https://doi.org/10.1016/J.STEM.2010.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62:1876–83.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Todd Prior and Linda May (McMaster University) for their technical assistance during laboratory analysis. Figure graphics were created with BioRender.com.

Funding

M.K. was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada post-graduate scholarship. G.P was supported by the Natural Sciences and Engineering Research Council (NSERC) Discovery award.

Author information

Authors and Affiliations

Authors

Contributions

MK, SJ, and GP were involved in the conception and design of the study. MK conducted data acquisition and analysis. MK, SJ, and GP were involved in data interpretation. MK drafted the manuscript. All authors read and approved the final version.

Corresponding author

Correspondence to Gianni Parise.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 952 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, M., Joanisse, S. & Parise, G. Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation. GeroScience 46, 1843–1859 (2024). https://doi.org/10.1007/s11357-023-00929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00929-9

Keywords

Navigation