Skip to main content
Log in

WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans

  • Methods
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Caenorhabditis elegans is a popular organism for aging research owing to its highly conserved molecular pathways, short lifespan, small size, and extensive genetic and reverse genetic resources. Here we describe the WormBot, an open-source robotic image capture platform capable of conducting 144 parallel C. elegans survival and behavioral phenotyping experiments. The WormBot uses standard 12-well tissue culture plates suitable for solid agar media and is built from commercially available robotics hardware. The WormBot is controlled by a web-based interface allowing control and monitoring of experiments from any internet connected device. The standard WormBot hardware features the ability to take both time-lapse bright field images and real-time video micrographs, allowing investigators to measure lifespan, as well as heathspan metrics as worms age. The open-source nature of the hardware and software will allow for users to extend the platform and implement new software and hardware features. This extensibility, coupled with the low cost and simplicity of the system, allows the automation of C. elegans survival analysis even in small laboratory settings with modest budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533(7604):452–454

    Article  CAS  PubMed  Google Scholar 

  • Bansal A, Zhu LJ, Yen K, Tissenbaum HA (2015) Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc Natl Acad Sci U S A 112(3):E277–E286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banse SA, Blue BW, Robinson KJ, Jarrett CM, Phillips PC (2019a) The Stress-Chip: a microfluidic platform for stress analysis in Caenorhabditis elegans. PLoS One 14(5):e0216283

    Article  PubMed  PubMed Central  Google Scholar 

  • Banse SA, et al. (2019b) Automated lifespan determination across Caenorhabditis strains and species reveals assay-specific effects of chemical interventions. bioRxiv, p. 757302.

  • Bitto A, et al. (2015) Biochemical Genetic Pathways that modulate aging in multiple species. Cold Spring Harb Perspect Med 5(11)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budde MW, Roth MB (2010) Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21(1):212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnaevskiy N, et al. (2018) Reactivation of RNA metabolism underlies somatic restoration after adult reproductive diapause in C. elegans. Elife 7

  • Churgin MA, et al. (2017) Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. Elife 6

  • D'Ausilio A (2012) Arduino: a low-cost multipurpose lab equipment. Behav Res Methods 44(2):305–313

    Article  PubMed  Google Scholar 

  • Evangelidis GD, Psarakis EZ (2008) Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 30(10):1858–1865

    Article  PubMed  Google Scholar 

  • Ewald CY, Castillo-Quan JI, Blackwell TK (2018) Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling. Gerontology 64(1):96–104

    Article  CAS  PubMed  Google Scholar 

  • Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435–462

    Article  CAS  PubMed  Google Scholar 

  • Fuellen G, Jansen L, Cohen AA, Luyten W, Gogol M, Simm A, Saul N, Cirulli F, Berry A, Antal P, Köhling R, Wouters B, Möller S (2019) Health and aging: unifying concepts, scores, biomarkers and pathways. Aging Dis 10(4):883–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183(21):6207–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gems D et al (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150(1):129–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill MS, Olsen A, Sampayo JN, Lithgow GJ (2003) An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic Biol Med 35(6):558–565

    Article  CAS  PubMed  Google Scholar 

  • Hahm JH et al (2015) C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat Commun 6:8919

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Lee D, Lee H, Kim D, Son HG, Yang JS, Lee SV, Kim S (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7(35):56147–56152

    PubMed  PubMed Central  Google Scholar 

  • Husson SJ, et al. (2013) Keeping track of worm trackers. WormBook, p. 1-17.

  • Kaeberlein M (2018) How healthy is the healthspan concept? Geroscience 40(4):361–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaehler A, Bradski G (2016) Learning OpenCV 3: computer vision in C++ with the OpenCV library. O’Reilly Media, Inc.

  • Kamath RS et al (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2:1–10

    Google Scholar 

  • Kapahi P, Kaeberlein M, Hansen M (2017) Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev 39:3–14

    Article  PubMed  Google Scholar 

  • Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci 366(1561):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laranjeiro R, et al. (2019) Swim exercise in C. elegans extends neuromuscular and intestinal healthspan, enhances learning ability, and protects against neurodegeneration. bioRxiv p. 633776.

  • Laurie B, Laurie P 2003) Apache: the definitive guide. O’Reilly Media, Inc.

  • Leinwand SG et al (2015) Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans. Elife 4:e10181

    Article  PubMed  PubMed Central  Google Scholar 

  • Leiser SF et al (2013) Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 68(10):1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, Davis C, Chandler-Brown D, Kaeberlein M (2009) Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324(5931):1196–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan CL, Peng CY, Chen CH, McIntire S (2011) Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci U S A 108(22):9274–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9):712

    Article  CAS  PubMed  Google Scholar 

  • Puckering T et al (2017) Automated wormscan. F1000 Res 6:192

    Article  Google Scholar 

  • Rera M, Vallot C, Lefrancois C (2018) The Smurf transition: new insights on ageing from end-of-life studies in animal models. Curr Opin Oncol 30(1):38–44

    Article  PubMed  Google Scholar 

  • Rollins JA et al (2017) Assessing health span in Caenorhabditis elegans: lessons from short-lived mutants. J Gerontol A Biol Sci Med Sci 72(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill DE, van den Heuvel S, Vidal M (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14(10B):2162–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JC, et al. (2019) Electrophysiological measures of aging pharynx function in C. elegans reveal enhanced organ functionality in older, long-lived mutants. J Gerontol A Biol Sci Med Sci 74(8):1173–1179

    Article  Google Scholar 

  • Saberi-Bosari S, Huayta J, San-Miguel A (2018) A microfluidic platform for lifelong high-resolution and high throughput imaging of subtle aging phenotypes in C. elegans. Lab Chip 18(20):3090–3100

    Article  CAS  PubMed  Google Scholar 

  • Schulenburg H, Felix MA (2017) The natural biotic environment of Caenorhabditis elegans. Genetics 206(1):55–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J, Fontana W (2013) The Caenorhabditis elegans Lifespan Machine. Nat Methods 10(7):665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uno M, Nishida E (2016) Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2:16010

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Raamsdonk JM, Hekimi S (2011) FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech Ageing Dev 132(10):519–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Zhao Y, Zhang Z (2019) Age-dependent effects of floxuridine (FUdR) on senescent pathology and mortality in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 509(3):694–699

    Article  CAS  PubMed  Google Scholar 

  • Xian B, Shen J, Chen W, Sun N, Qiao N, Jiang D, Yu T, Men Y, Han Z, Pang Y, Kaeberlein M, Huang Y, Han JD (2013) WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12(3):398–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nick Terzopoulos for media preparation; Shane Rea, Andres Vidal-Gadea, George Sutphin, Christine Queitsch, and Makoto Horikawa for beta testing the WormBot in their laboratories; Matt Crane and other members of the Kaeberlein lab for discussions and testing of the WormBot hardware and hardware; Ron Musgrave and the UW Physics Instrument Shop for advice and assistance when constructing the original WormBot prototype; and the developers of the various open-source software and hardware platforms on which the WormBot relies.

Funding

This work was supported by the University of Washington Nathan Shock Center of Excellence in the Basic Biology of Aging, NIH grant P30AG013280 to MK. JNP and BWB were supported by NIH grant T32AG000057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Kaeberlein.

Ethics declarations

Conflict of interest

JNP, BWB, and MK are shareholders of GeroTech, Inc., a company seeking to provide a commercial version of the WormBot.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2550 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitt, J.N., Strait, N.L., Vayndorf, E.M. et al. WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 41, 961–973 (2019). https://doi.org/10.1007/s11357-019-00124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-019-00124-9

Keywords

Navigation