Skip to main content

Advertisement

Log in

N2 fixation in urbanization area rivers: spatial-temporal variations and influencing factors

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

While nitrogen (N2) fixation is an important process in nitrogen (N) biogeochemical cycling, supplying a significant portion of the N in natural ecosystems, few quantitative constraints exist concerning its contribution to the N enrichment and export from river ecosystems. This study estimates the N2 fixation rates of urban rivers in the Yangtze Estuary area using acetylene reduction. The results demonstrate that the prominent spatiotemporal variability of river N2 fixation rates is driven by various environmental factors. River N2 fixation rates are significantly higher in the summer (90.57 ± 14.60 ngN·L−1·h−1) than in the winter (57.98 ± 15.73 ngN·L−1·h−1). Spatially, rivers draining urban and suburban areas have higher N2 fixation rates than those draining rural areas. The N2 fixation rates are positively correlated with the N2 fixing cyanobacteria density, water temperature, light, and the water phosphorus (P) concentration, but they are negatively correlated with the dissolved N concentration (NH4+-N and NO3-N). The N2 fixation rates annually range from 53.20 to 89.24 ngN·L−1·h−1 for all of the sampling rivers, which is equivalent to a depth integrated (0–0.6 m) N input of 0.163–0.274 gN·m−2·a−1. The determined annual N input via N2 fixation is generally higher than that of marine systems, but it is lower than that of eutrophic lakes. This study provides robust evidence that N2 fixation can supply a substantial portion of the N input to human-impacted river ecosystems, which has not been sufficiently accounted for when determining the N mass balance of riverine ecosystems. A high N2 fixation rate may increase the ratio of N to P input to river systems, and therefore render P the limiting factor in aquatic eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amy MM, Wayne AW (2007) Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshw Biol 52:2211–2225

    Google Scholar 

  • Bellmore RA, Compton JE, Brooks JR, Fox EW, Hill RA, Sobota DJ et al (2018) Nitrogen inputs drive nitrogen concentrations in U.S. streams and rivers during summer low flow conditions. Sci Total Environ 639:1349–1359. https://doi.org/10.1016/j.scitotenv.2018.05.008

    CAS  Google Scholar 

  • Breitbarth E, Mills MM, Friedrichs G, LaRoche J (2004) The Bunsen gas solubility coefficient of ethylene as a function of temperature and salinity and its importance for nitrogen fixation assays. Limnol Oceanogr Methods 2(2):282–288. https://doi.org/10.4319/lom.2004.2.282

    Article  Google Scholar 

  • Canale RP, Vogel AH (1974) Effects of temperature on phytoplankton growth. J Environ Eng Div 100(1):231–241

    Google Scholar 

  • Capone DG (1993) Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure. In: Handbook of Methods in Aquatic Microbial Ecology. Lewis Press, Boca Raton, pp 621–631

    Google Scholar 

  • Capone DG, Carpenter EJ (1982) Nitrogen fixation in the marine environment. Science 217(4565):1140–1142. https://doi.org/10.1126/science.217.4565.1140

    Article  CAS  Google Scholar 

  • Carpenter EJ, Capone DG (1983) Nitrogen in the Marine Environment. Academic Press, New York.

  • Capone DG, Subramaniam A, Montoya JP, Montoya JP, Voss M, Humborg C, Johansen AM et al (1998) An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar Ecol Prog 172(1):281–292. https://doi.org/10.3354/meps172281

    Article  Google Scholar 

  • Chang J, Chiang KP, Gong GC (2000) Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, Trichodesmium, in southern East China Sea. Cont Shelf Res 20(4–5):479–492. https://doi.org/10.1016/S0278-4343(99)00082-5

    Google Scholar 

  • Cox RM, Fay P (1969) Special aspects of nitrogen fixation by blue-green algae. Proc R Soc Lond B 172:357–366

    CAS  Google Scholar 

  • Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–167. https://doi.org/10.1038/nature05392

    CAS  Google Scholar 

  • Dilworth MJ (1966) Acetylene reduction by nitrogen fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta 127:285–294. https://doi.org/10.1016/0304-4165(66)90383-7

    CAS  Google Scholar 

  • Dominic B, Chen YB, Zehr JP (1998) Cloning and transcriptional analysis of the nifUHDK genes of Trichodesrniurn sp. IMS101 reveals stable nifD, nifDK and nifK transcripts. Microbiology 144:3359–3368. https://doi.org/10.1099/00221287-144-12-3359

    CAS  Google Scholar 

  • Duan G, Liu XH, Gao YT, Du G, Tie JG, Wang W (2006) Study on spectrophotometry measurement of algae growth in Dianchi Lake. Chem Bioeng 23(4):1672–5425

    Google Scholar 

  • Dumont E, Harrison JA, Kroeze C, Bakker EJ, Seitzinger SP (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model. Glob Biogeochem Cycles 19:1–14. https://doi.org/10.1029/2005GB002488

    Article  CAS  Google Scholar 

  • Duong TP, Tiedje JM (1971) Factors affecting growth and acetylene reduction of photosynthetic bacteria isolated from lake sediments. Agron. Abs, p 81

  • Elmetri I, Bell PRF (2004) Effects of phosphorus on the growth and nitrogen fixation rates of Lyngbya majuscula: implications for management in Moreton Bay, Queensland. Marine Ecology Progress Series 281:27–35

    CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J et al (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296. https://doi.org/10.1126/science.290.5490.291

    Article  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56(2):340

    CAS  Google Scholar 

  • Ferber LR, Levine SN, Lini A, Livingston GP (2004) Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshw Biol 49:690–708. https://doi.org/10.1111/j.1365-2427.2004.01218.x

    Article  CAS  Google Scholar 

  • Flett RJ, Hamilton RD, Campbell NE (1976) Aquatic acetylene reduction techniques: solutions to several problems. Can J Microbiol 22:43–51. https://doi.org/10.1139/m76-006

    Article  CAS  Google Scholar 

  • Fu FX, Bell PRF (2003a) Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp. Mar Ecol-Prog Ser 257:69–76. https://doi.org/10.3354/meps257069

    Article  CAS  Google Scholar 

  • Fu FX, Bell PRF (2003b) Factors affecting N2 fixation by the cyanobacterium Trichodesmium, sp. GBRTRLI101. FEMS Microbiol Ecol 45(2):203–209. https://doi.org/10.1016/S0168-6496(03)00157-0

    Article  CAS  Google Scholar 

  • Gallon JR (1981) The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends in Biochemical Sciences. 6:19–23. https://doi.org/10.1016/0968-0004(81)90008-6

    CAS  Google Scholar 

  • Gallon JR, Jones DA, Page TS (1996) Trichodesmium, the paradoxical diazotroph. Algol Stud (Arch Hydrobiol) 83(2):15–243

    Google Scholar 

  • Galloway JN (1998) The global nitrogen cycle: changes and consequences. Nitrogen, the Confer-N-s:15–24. https://doi.org/10.1016/B978-0-08-043201-4.50008-3

    Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cycles 11(2):235–266. https://doi.org/10.1029/97GB00077

    CAS  Google Scholar 

  • Gu B, Alexander V (1993) Estimation of N2 fixation based on differences in the natural abundance of 15N among freshwater N2-fixing and non-N2-fixing algae. Oecologia 96:43–48. https://doi.org/10.1007/BF00318029

    Article  CAS  Google Scholar 

  • Hafeez FY, Aslam Z, Malik KA (1988) Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata, (L.) Wilczek. Plant Soil 106(1):3–8. https://doi.org/10.1007/BF02371188

    Article  Google Scholar 

  • Hardy RWF, Knight E Jr (1967) ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta (BBA)-Enzymol 139(1):69–90. https://doi.org/10.1016/0005-2744(67)90114-3

    CAS  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene- ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5(1):47–81. https://doi.org/10.1016/0038-0717(73)90093-X

    Article  CAS  Google Scholar 

  • Hayes NM, Patoine A, Haig HA, Simpson GL, Swarbrick VJ, Wiik E, Leavitt PR (2019) Spatial and temporal variation in nitrogen fixation and its importance to phytoplankton in phosphorus-rich lakes. Freshw Biol 64:269–283

    CAS  Google Scholar 

  • Hellström T (1996) An empirical study of nitrogen dynamics in lakes. Water Environ Res 68:55–65

    Google Scholar 

  • Hiatt DL, Robbins CJ, Back JA, Kostka PK, Doyle RD, Walker CM et al (2017) Catchment-scale alder cover controls nitrogen fixation in boreal headwater streams. Freshw Sci 36(3):523–532

    Google Scholar 

  • Higgins SN, Paterson MJ, Hecky RE, Schindler DW, Venkiteswaran JJ, Findlay DL (2018) Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: evidence from a 46-year whole-lake experiment. Ecosystems 21:1088–1100. https://doi.org/10.1007/s10021-017-0204-2

    Google Scholar 

  • Horne AJ, Goldman CR (1972) Nitrogen fixation in Clear Lake, California I Seasonal variation and the role of heterocysts. Limnol Oceanogr 17(5):678–692. https://doi.org/10.4319/lo.1972.17.5.0678

    Article  Google Scholar 

  • Houlton BZ, Wang Y, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    CAS  Google Scholar 

  • Howarth RW, Marino R (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2.Biogeochemical controls. Limnol Oceanogr 33(4part2):688–701. https://doi.org/10.4319/lo.1988.33.4part2.0688

    Article  CAS  Google Scholar 

  • Howarth RW, Marino R, Lane J (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33(4part2):669–687. https://doi.org/10.4319/lo.1988.33.4part2.0669

    Article  CAS  Google Scholar 

  • Jin XC, Tu QY (1990) The standard methods in lake eu- trophication investigation (second edition). China En- vironmental Science Press, Beijing

    Google Scholar 

  • Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, New Jersey ISBN:0-13-033775-7

    Google Scholar 

  • Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538. https://doi.org/10.1038/41474

    Article  CAS  Google Scholar 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R et al (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57(1):47–98. https://doi.org/10.1007/978-94-017-3405-9_2

    Article  Google Scholar 

  • Krug FJ, Růžička J, Hansen EH (1979) Determination of ammonia in low concentrations with Nessler’s reagent by flow injection analysis. Analyst 104(1234):47–54. https://doi.org/10.1039/AN9790400047

    Article  CAS  Google Scholar 

  • Kunza LA, Hall RO (2014) Nitrogen fixation can exceed inorganic nitrogen uptake fluxes in oligotrophic streams. Biogeochemistry 121:537–549. https://doi.org/10.1007/s10533-014-0021-z

    Article  CAS  Google Scholar 

  • Kuypers M, Marchant H, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276. https://doi.org/10.1038/nrmicro.2018.9

    CAS  Google Scholar 

  • Levine SN, Lewis WM (1987) A numerical model of nitrogen fixation and its application to Lake Valencia, Venezuela. Freshw Biol 17(2):265–274. https://doi.org/10.1111/j.1365-2427.1987.tb01047.x

    Article  Google Scholar 

  • Lian ZL (2009) Effects of phosphorus, Iron and marine colloids on chlorophyll a and nitrogen fixation rate in the surface water of Beibu Gulf. Xiamen University

  • Lian ZL, Zheng AR, Huang CG (2007) Factors that affected nitrogen fixation by the addition of phosphorus, iron, and colloids in the surface water of the Beibu Gulf in spring. Acta Ecol Sin 2016 36(14):4355–4362

    Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2006) Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: an experimental examination. Limnol Oceanogr 51:2278–2289

    CAS  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA (2007) Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshw Biol 52:2211–2225. https://doi.org/10.1111/j.1365-2427.2007.01851.x

    CAS  Google Scholar 

  • Marcarelli AM, Baker MA, Wurtsbaugh WA (2008) Is in-stream N2 fixation an important N source for benthic communities and stream ecosystems? J N Am Benthol Soc 27:186–211

    Google Scholar 

  • Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF et al (2010) Global nutrient export from watersheds 2 (NEWS2): model development and implementation. Environ Modell Softw 25(7):3225–3230. https://doi.org/10.1016/j.envsoft.2010.01.007

    Google Scholar 

  • McQueen DJ, Lean DRS (1987) Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Can J Fish Aquat Sci 44(3):598–604. https://doi.org/10.1139/f87-073

    Article  CAS  Google Scholar 

  • Mills MM, Ridame C, Davey M, Roche JL, Geider RJ (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429(6989):292. https://doi.org/10.1038/nature02550

    Article  CAS  Google Scholar 

  • Mugidde R, Hecky RE, Hendzel LL, Taylor WD (2003) Pelagic nitrogen fixation in Lake Victoria (East Africa). J Great Lakes Res 29(1):76–88. https://doi.org/10.1016/S0380-1330(03)70540-1

    Article  CAS  Google Scholar 

  • Paerl HW (2009) Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuar Coasts 32:593–601

    CAS  Google Scholar 

  • Patoine A, Graham MD, Leavitt PR (2006) Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnol Oceanogr 51:1665–1677. https://doi.org/10.4319/lo.2006.51.4.1665

    Article  CAS  Google Scholar 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, Cambridge

    Google Scholar 

  • Robarts RD, Zohary T (1984) Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of Ecology 72(3):1001–1017

    Google Scholar 

  • Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N Z J Mar Freshw Res 21(3):391–399. https://doi.org/10.1080/00288330.1987.9516235

    CAS  Google Scholar 

  • Robson RL, Postgate JR (1980) Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol 34(3):183–207

    CAS  Google Scholar 

  • Rydin E, Hyenstrand P, Gunnerhed M, Blomqvist P (2002) Nutrient limitation of cyanobacterial blooms: an enclosure experiment from the coastal zone of the NW Baltic proper. Mar Ecol Prog Ser 239:31–36

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego, pp 8–588

    Google Scholar 

  • Schollhorn R, Burris RH (1966) Study of intermediates in nitrogen fixation. Fed Proc 24:710

    Google Scholar 

  • Scott JT, Grantz EM (2013) N2 fixation exceeds internal nitrogen loading as a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs. Freshw Sci 32(3):849–861

    Google Scholar 

  • Scott JT, Marcarelli AM (2012) Cyanobacteria in freshwater benthic environments. Ecology of Cyanobacteria II: Their Diversity in Space and Time (ed. Whitton, B. A.), pp 271-289. https://doi.org/10.1007/978-94-007-3855-3_9

    Google Scholar 

  • Scott JT, Doyle RD, Prochnow SJ, White JD (2008) Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured? Ecol Appl 18:805–819

    Google Scholar 

  • Scott JT, Stanley JK, Doyle RD, Forbes MG, Brooks BW (2009) River-reservoir transition zones are nitrogen fixation hotspots regardless of ecosystem trophic state. Hydrobiologia 625:61–68. https://doi.org/10.1007/s10750-008-9696-2

    CAS  Google Scholar 

  • Smith VH (1992) Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems. Biogeochemistry 18(1):19–35. https://doi.org/10.1007/BF00000424

    Article  CAS  Google Scholar 

  • Smith VH (1995) Historical trends in the Lake Okeechobee ecosystem IV. Nitrogen: phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential. Arch Hydrobiol Suppl 107(1):71–88

    CAS  Google Scholar 

  • Sobota DJ, Compton JE, Harrison JA (2013) Reactive nitrogen inputs to US lands and waterways: how certain are we about sources and fluxes? Front Ecol Environ 11:82–90

    Google Scholar 

  • Sohm JA, Webb EA, Capone DG (2011) Emerging patterus of marine nitrogen fixation. Nat Rev Microbiol 9(7):499–508. https://doi.org/10.1038/nrmicro2594

    CAS  Google Scholar 

  • Staal M, Meysman FJR, Stal LJ (2003) Temperature excludes N2 fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504–507

    CAS  Google Scholar 

  • Staal M, Hekkert STL, Brummer GJ, Veldhuis M, Sikkens C, Persijn S, Stal LJ (2007) Nitrogen fixation along a north-south transect in the eastern Atlantic Ocean. Limnol Oceanogr 52(4):1305–1316. https://doi.org/10.4319/lo.2007.52.4.1305

    CAS  Google Scholar 

  • Stewart DP (1964) Nitrogen fixation by myxophyceae from marine environments. J Gen Microbiol 36(3):415. https://doi.org/10.1099/00221287-36-3-415

    Article  CAS  Google Scholar 

  • Stewart WDP, Alexander GA (1971) Phosphorus availability and nitrogenase activity in aquatic blue-green algae. Freshw Biol 1:389–404. https://doi.org/10.1111/j.1365-2427.1971.tb01570.x

    Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A 58(5):2071–2078. https://doi.org/10.1073/pnas.58.5.2071

    CAS  Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1968) Acetylene reduction by nitrogen-fixing blue-green algae. Arch Mikrobiol 62(4):336–348. https://doi.org/10.1007/BF00425639

  • Stewart WDP, Mague T, Fitzgerald GP, Burris RH (1971) Nitrogenase activity in Wisconsin lakes of differing degrees of eutrophication. New Phytol 70(3):497–509. https://doi.org/10.1111/j.1469-8137.1971.tb02551.x

    CAS  Google Scholar 

  • Tan YJ, Wang XQ, Ye X, Chen ZG, Yu ZJ, Wang DQ (2014) The analysis and calculation of nitrogen input load in Shanghai Huangpu river network. Environ Pollut Control 36(10):13–17

    Google Scholar 

  • Vitousek PM, et al. (2002) Towards an ecological understanding of biological nitrogen fixation. In: Boyer E.W., Howarth R.W. (eds) The Nitrogen Cycle at Regional to Global Scales. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3405-9_1

    Google Scholar 

  • Vrede T, Ballantyne A, Mille-lindblom C, Algesten G, Gudasz C, Lindahl S, Brunberg AK (2009) Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshw Biol 54:331–344

    CAS  Google Scholar 

  • Wei ZY, Wang T, Xu K, Xu L, Teng YM, Cai XL (2016) Effects of aquatic nitrogen pollution on the nitrogen cycling bacteria in plain river network. J Lake Sci 28(4):812–817

    Google Scholar 

  • Wilkinson CR (1983) Sammarco P W. effects of fish grazing and damselfish territoriality on coral reef algae. II Nitrogen fixation. Mar Ecol 13(1):15–19

    Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their helpful comments on and improvements to this paper.

Funding

This study was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41671467 and 41977321), the Ministry of Science and Technology Project Foundation (2014FY210600), and the Shanghai Municipal Natural Science Foundation (Grant No. ZR1412100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqi Wang.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, D., Chen, S. et al. N2 fixation in urbanization area rivers: spatial-temporal variations and influencing factors. Environ Sci Pollut Res 27, 7211–7221 (2020). https://doi.org/10.1007/s11356-019-06780-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06780-w

Keywords

Navigation