Skip to main content
Log in

Biochemical impacts in adult and juvenile farmed European seabass and gilthead seabream from semi-intensive aquaculture of southern European estuarine systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The nutritional value and developmental variations of cultured fish were assessed for European seabass and gilthead seabream specimens reared in semi-intensive aquaculture systems in two Portuguese estuaries. Quantification of total protein and of carbohydrate and fatty acid profiles was carried out to determine differences between the composition of the same species in two development stages reared in four distinct farms. A significant influence of the rearing site on the nutritional composition of the same species was found for adult European seabass regarding saturated, monounsaturated and highly unsaturated fatty acids contents, both between estuaries and within each estuary. In gilthead seabream, saturated, monounsaturated, polyunsaturated and highly unsaturated fatty acids content were also influenced by the rearing site. Carbohydrate analysis showed a significant influence of the rearing site on free sugar and polysaccharide content in fish of both species, and there was no influence on the species’ protein content. Differences in fatty acid and carbohydrate content among juvenile and adult stages were found for all the groups studied. The present study supported the existing evidence that semi-intensive rearing systems are subjected to the variability of extrinsic factors in the rearing sites, influencing the nutritional value of the same species, namely regarding lipid and carbohydrate profiles, depending on the production site. From a consumer’s perspective, such differences may come as a disadvantage of the rearing method, as it is expected for a product to provide equal nutritional properties and benefits regardless its origin, especially within the same country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alasalvar C, Taylor KDA, Öksüz A, Garthwaite T, Alexis MN, Grigorakis K (2001) Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem 72(1):33–40. https://doi.org/10.1016/S0308-8146(00)00196-5

    Article  CAS  Google Scholar 

  • Alasalvar C, Taylor KDA, Zubcov E, Shahidi F, Alexis M (2002) Differentiation of cultured and wild sea bass ( Dicentrarchus labrax ): total lipid content , fatty acid and trace mineral composition. 79:145–150

  • APA (2016a) Plano de Gestão de Região Hidrográfica - Região Hidrográfica Do Vouga,Mondego e Lis (Rh4)

  • APA (2016b) Plano de Gestão de Região Hidrográfica - Região Hidrográfica Do Sado e Mira (Rh6)

  • Baki B, Gönener S, Kaya D (2015) Comparison of food, amino acid and fatty acid compositions of wild and cultivated sea bass (Dicentrarchus labrax L., 1758). Turk J Fish Aquat Sci 15(1):175–179

    Article  Google Scholar 

  • Baki B, Ozturk DK, Sariipek M, Kerim M, Eyuboglu B (2016) Effect of restricted feeding on the growth and body composition of European seabass Dicentrarchus labrax (Linnaeus, 1758). Indian J Fish 63(4):89–95. https://doi.org/10.21077/ijf.2016.63.4.57684-14

    Article  Google Scholar 

  • Ballester-Lozano GF, Benedito-Palos L, Mingarro M, Navarro JC, Pérez-Sánchez J (2016) Up-scaling validation of a dummy regression approach for predictive modelling the fillet fatty acid composition of cultured European sea bass (Dicentrarchus labrax). Aquac Res 47(4):1067–1074. https://doi.org/10.1111/are.12563

    Article  CAS  Google Scholar 

  • Boltaña S, Sanhueza N, Aguilar A, Gallardo-Escarate C, Arriagada G, Valdes JA, Soto D, Quiñones RA (2017) Influences of thermal environment on fish growth. Ecol Evol 7(17):6814–6825. https://doi.org/10.1002/ece3.3239

    Article  Google Scholar 

  • Borresen T (1992) Quality aspects of wild and reared fish. In: Huss H, Jacobsen M, Liston J (eds) Quality assurance in the food industry. Elsevier, Amsterdam, pp 1–17

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Cahu C, Salen P, De Lorgeril M (2004) Farmed and wild fish in the prevention of cardiovascular diseases: assessing possible differences in lipid nutritional values. Nutr Metab Cardiovasc Dis 14(1):34–41. https://doi.org/10.1016/S0939-4753(04)80045-0

    Article  CAS  Google Scholar 

  • Carta G, Murru E, Banni S, Manca C (2017) Palmitic acid : physiological role, metabolism and nutritional implications. 8(November):1–14. https://doi.org/10.3389/fphys.2017.00902

  • Catarino M, Peneda M, Santana F (1987) Estudo do impacte da indústria no estuário do Rio Sado. Estimativa da poluição afluente ao sistema, Lisboa

    Google Scholar 

  • CEC (2000) Council Directive of 23 October 2000, establishing a framework for community action in the field of water policy (2000/60/EC). Off J Eur Communities L327 of 22.12.2000, 1e72

  • Clandinin MT (1999) Brain development and assessing the supply of polyunsaturated fatty acid. Lipids 34:131–137

    Article  CAS  Google Scholar 

  • CONTAM (2005) Opinion of the scientific panel on Cotaminants in the food chain (CONTAM panel) on a request from the European Parliament related to the safety assessment of wild and farmed fish. EFSA J 236:1–118

    Google Scholar 

  • Cordier M, Weber J, Zwingelstein G (2002) Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during an annual cycle. Roles of environmental temperature and salinity. Comp Biochem Physiol B 133:281–288. https://doi.org/10.1016/S1096-4959(02)00149-5

    Article  Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, Van Den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • De Francesco M, Parisi G, Pérez-Sánchez J, Gómez-Réqueni P, Médale F, Kaushik SJ, Mecatti M, Poli BM (2007) Effect of high-level fish meal replacement by plant proteins in gilthead sea bream ( Sparus aurata ) on growth and body / fillet quality traits. Aquac Nutr 13(5):361–372. https://doi.org/10.1111/j.1365-2095.2007.00485.x

    Article  Google Scholar 

  • Delgado A, Estevez A, Hortelano P, Alejandre MJ (1994) Analyses of fatty acids from different lipids in liver and muscle of sea bass (DicentrarchusLabrax L.). Influence of temperature and fasting. Comp Biochem Physiol 108A(4):673–680

    Article  CAS  Google Scholar 

  • Dinis MT, Ribeiro L, Soares F, Sarasquete C (1999) A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture 176:27–38. https://doi.org/10.1016/S0044-8486(99)00047-2

    Article  Google Scholar 

  • Dyall SC, Michael-Titus AT (2008) Neurological benefits of omega-3 fatty acids. NeuroMolecular Med 10(4):219–235

    Article  CAS  Google Scholar 

  • EFSA (2010) Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8(3):1461. https://doi.org/10.2903/j.efsa.2010.1461

    Article  CAS  Google Scholar 

  • EFSA (2012) Scientific opinion on dietary reference values for protein. EFSA J 10(2):2557, 66. https://doi.org/10.2903/j.efsa.2012.2557

  • EFSA (2014) Scientific opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA J 12(7):3761. https://doi.org/10.2903/j.efsa.2014.3761

  • Elliott M, Whitfield AK, Potter IK, Blader SJM, Cyrus DP, Nordlie FG, Harrison TD (2007) The guild apprach to categorizing estuarine fish assemblages: a global review. Fish Fish 8:241–268. https://doi.org/10.1111/j.1467-2679.2007.00253.x

    Article  Google Scholar 

  • Erdem ME, Baki B, Samsun S (2009) Fatty acid and amino acid compositions of cultured and wild sea bass (Dicentrarchus labrax, L., 1758) from different regions in Turkey. J Anim Vet Adv 8(10):1959–1963

  • FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200pp

  • Ferreira SM, Pardal MA, Lillebø AI, Cardoso PG, Marques JC (2004) Population dynamics of Cyathura carinata (isopoda) in a eutrophic temperate estuary. Estuar Coast Shelf Sci 61(4):669–677. https://doi.org/10.1016/j.ecss.2004.08.001

    Article  Google Scholar 

  • Flos R, Reig L, Oca J, Ginovart M (2002) Influence of marketing and different land-based systems on gilthead sea bream (Sparus aurata)quality. Aquac Int 10(3):189–206. https://doi.org/10.1023/A:1022100928523

    Article  CAS  Google Scholar 

  • Fuentes A, Fernández-Segovia I, Serra JA, Barat JM (2010) Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem 119(4):1514–1518. https://doi.org/10.1016/j.foodchem.2009.09.036

    Article  CAS  Google Scholar 

  • Gökçe MA, Taşbozan O, Çelik M, Tabakoglu ŞS (2004) Seasonal variations in proximate and fatty acid compositions of female common sole (Solea solea). Food Chem 88(3):419–423. https://doi.org/10.1016/j.foodchem.2004.01.051

    Article  CAS  Google Scholar 

  • Gonçalves AMM, Azeiteiro UM, Pardal MA, De Troch M (2012) Fatty acid profiling reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuar Coast Shelf Sci 109:70–80. https://doi.org/10.1016/j.ecss.2012.05.020

    Article  CAS  Google Scholar 

  • Grigorakis K (2007) Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: a review. Aquaculture 272(1–4):55–75. https://doi.org/10.1016/j.aquaculture.2007.04.062

    Article  Google Scholar 

  • Grigorakis K, Alexis MN, Taylor KDA, Hole M (2002) Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. Int J Food Sci Technol 37(5):477–484 Retrieved from isi:000176030600002

    Article  CAS  Google Scholar 

  • Guillou A, Soucy P, Khalil M, Adambounou L (1995) Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook charr (Salvelinus fontinalis). Aquaculture 136(3–4):351–362. https://doi.org/10.1016/0044-8486(95)00053-4

    Article  CAS  Google Scholar 

  • Hardy RW, Scott TM, Harrell LW (1987) Replacement of herring oil with menhaden oil, soybean oil, or tallow in the diets of Atlantic salmon raised in marine net-pens. Aquaculture 65(3–4):267–277. https://doi.org/10.1016/0044-8486(87)90240-7

    Article  Google Scholar 

  • Harris WS, Poston WC, Haddock CK (2007) Tissue n - 3 and n - 6 fatty acids and risk for coronary heart disease events. Atherosclerosis 193(1):1–10. https://doi.org/10.1016/j.atherosclerosis.2007.03.018

    Article  CAS  Google Scholar 

  • Harris WS, Kris-Etherton PM, Harris KA (2008) Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Curr Atheroscler Rep 10(6):503–509. https://doi.org/10.1007/s11883-008-0078-z

    Article  CAS  Google Scholar 

  • HCN (2002) Dietary reference intakes: energy, proteins, fats, and digestible carbohydrates. The Hague: Health Council of the Netherlands, 2001; publication no. 2001/19ER

  • Henderson RJ, Tocher DR (1987) The lipid composition and biochemistry of freshwater fish. Prog Lipid Res 26(4):281–347. https://doi.org/10.1016/0163-7827(87)90002-6

    Article  CAS  Google Scholar 

  • Hidalgo F, Alliot E (1988) Influence of water temperature on protein requirements and protein utilization in juvenile seabass, Dicentrarchus labrax. Aquaculture 72:115–129

    Article  Google Scholar 

  • Hu X, Shi Y, Zhang P, Miao M, Zhang T, Jiang B (2016) D-mannose: properties, production, and applications: an overview. Compr Rev Food Sci Food Saf 15(4):773–785. https://doi.org/10.1111/1541-4337.12211

    Article  Google Scholar 

  • Huss HH (1995) Quality and quality changes in fresh fish. In: Huss HH (ed) FAO Fisher

  • Ichikawa M, Scott DA, Losfeld ME, Freeze HH (2014) The metabolic origins of mannose in glycoproteins. J Biol Chem 289(10):6751–6761. https://doi.org/10.1074/jbc.M113.544064

    Article  CAS  Google Scholar 

  • IOM (2011) Nutrition and traumatic brain injury: improving acute and subacute health outcomes in military personnel. The National Academies Press, Washington DC

    Google Scholar 

  • Izquierdo MS, Obach A, Arantzamendi L, Montero D, Robaina L, Rosenlund G (2003) Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquac Nutr 9(6):397–407. https://doi.org/10.1046/j.1365-2095.2003.00270.x

    Article  CAS  Google Scholar 

  • Izquierdo MS, Montero D, Robaina L, Caballero MJ, Rosenlund G, Ginés R (2005) Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 250(1–2):431–444. https://doi.org/10.1016/j.aquaculture.2004.12.001

    Article  CAS  Google Scholar 

  • Kaha et al (2009) Comparative analysis of nutritive composition, fatty acids, amino acids and vitamin contents pf wild and cultured gilthead seabream (Sparus aurata L. 1758). J Anim Vet Adv 8/3/541–544

  • Kissil GW, Lupatsch I, Higgs DA, Hardy RW (2000) Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L. Aquac Res 31(7):595–601

    Article  Google Scholar 

  • Kissinger KR, García-Ortega A, Trushenski JT (2016) Partial fish meal replacement by soy protein concentrate, squid and algal meals in low fish-oil diets containing Schizochytrium limacinum for longfin yellowtail Seriola rivoliana. Aquaculture. Elsevier B.V. 452:37–44. https://doi.org/10.1016/j.aquaculture.2015.10.022

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757. https://doi.org/10.1161/01.CIR.0000038493.65177.94

    Article  Google Scholar 

  • Kromhout D, Spaaij CJK, de Goede J, Weggemans RM (2016) The 2015 Dutch food-based dietary guidelines. Eur J Clin Nutr 70(8):869–878. https://doi.org/10.1038/ejcn.2016.52

    Article  CAS  Google Scholar 

  • Kyrana V, Lougovois V (2015) Sensory , chemical and microbiological assessment of farm raised European sea bass ( D . labrax ) stored in melting ice. In J Food Sci Technol (MARCH 2002):319–328. https://doi.org/10.1046/j.1365-2621.2002.00572.x

  • Lal SP (1989) Minerals. In: Halver JE (ed) Fish nutrition. Academic Press, San Diego, pp 220–257

    Google Scholar 

  • Lanari D, Poli BM, Ballestrazzi R, Lupi P, D’Agaro E, Mecatti M (1999) The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture 179(1–4):351–364. https://doi.org/10.1016/S0044-8486(99)00170-2

    Article  CAS  Google Scholar 

  • Lee JH, O’Keefe JH, Lavie CJ, Harris WS (2009) Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat Rev Cardiol 6(12):753–758. https://doi.org/10.1038/nrcardio.2009.188

    Article  CAS  Google Scholar 

  • Leitão R, Martinho F, Cabral HN, Neto JM, Jorge I, Pardal MA (2007) The fish assemblage of the Mondego estuary: composition, structure and trends over the past two decades. Hydrobiologia 587(1):269–279. https://doi.org/10.1007/s10750-007-0688-4

    Article  Google Scholar 

  • Lopes da Cunha P (1994) Estrutura e dinâmica da ictiofauna do estuário do Sado. Universidade de Lisboa

  • Marshall CT, Yaragina NA, Lambert Y, Kjesbu OS (1999) Total lipid energy as a proxy for total egg production by fish stocks. Nature 402:288–290

    Article  CAS  Google Scholar 

  • Martinho F, Leitão R, Viegas I, Dolbeth M, Neto JM, Cabral HN, Pardal MA (2007) The influence of an extreme drought event in the fish community of a southern Europe temperate estuary. Estuar Coast Shelf Sci 75(4):537–546. https://doi.org/10.1016/j.ecss.2007.05.040

    Article  Google Scholar 

  • McLusky DS, Elliott M (2004) The estuarine ecosystem—Ecology, Threats and Management (3rd editio). Oxford University Press, New York

    Book  Google Scholar 

  • Mnari A, Bouhlel I, Chraief I, Hammami M, Romdhane MS, El Cafsi M, Chaouch A (2007) Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chem 100(4):1393–1397. https://doi.org/10.1016/j.foodchem.2005.11.030

    Article  CAS  Google Scholar 

  • Montero D, Robaina L, Caballero MJ, Ginés R, Izquierdo MS (2005) Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture 248(1–4):121–134. https://doi.org/10.1016/j.aquaculture.2005.03.003

    Article  Google Scholar 

  • Mourente G, Good JE, Bell JG (2005) Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E2 and F2α, immune function and effectiveness of a fish oil finishing diet. Aquac Nutr 11(1):25–40

    Article  CAS  Google Scholar 

  • Nichols PD, Glencross B, Petrie JR, Singh SP (2014) Readily available sources of long-chain omega-3 oils: is farmed australian seafood a better source of the good oil than wild-caught seafood? Nutrients 6(3):1063–1079. https://doi.org/10.3390/nu6031063

    Article  CAS  Google Scholar 

  • Nunes M, Marchand P, Vernisseau A, Le Bizec B, Ramos F, Pardal MA (2011) PCDD/Fs and dioxin-like PCBs in sediment and biota from the Mondego estuary (Portugal). Chemosphere 83(10):1345–1352. https://doi.org/10.1016/j.chemosphere.2011.02.081

    Article  CAS  Google Scholar 

  • Nunes C, Silva L, Fernandes AP, Guiné RPF, Domingues MRM, Coimbra MA (2012) Occurrence of cellobiose residues directly linked to galacturonic acid in pectic polysaccharides. Carbohydr Polym 87(1):620–626

    Article  CAS  Google Scholar 

  • Olsson GB, Olsen RL, Carlehög M, Ofstad R (2003) Seasonal variations in chemical and sensory characteristics of farmed and wild Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 217(1–4):191–205. https://doi.org/10.1016/S0044-8486(02)00191-6

    Article  CAS  Google Scholar 

  • Orban E, Di Lena G, Ricelli A, Paoletti F, Casini I, Gambelli L, Caproni R (2000) Quality characteristics of sharpsnout sea bream (Diplodus puntazzo) from different intensive rearing systems. Food Chem 70(1):27–32. https://doi.org/10.1016/S0956-7135(99)00112-7

    Article  CAS  Google Scholar 

  • Orban E, Di Lena G, Nevigato T, Casini I, Santaroni G, Marzetti A, Caproni R (2002) Quality characteristics of sea bass intensively reared and from lagoon as affected by growth. Food Chem Toxicol 67(2):542–546

    CAS  Google Scholar 

  • Orban E, Nevigato T, Di Lena G, Casini I, Marzetti A, Chemistry F (2003) Differentiation in the lipid quality of wild and farmed seabass (Dicentrarchus labrax) and Gilthead Sea bream (Sparus aurata). J Food Sci 68(1):128–132. https://doi.org/10.1111/j.1365-2621.2003.tb14127.x

    Article  CAS  Google Scholar 

  • Owen JM, Adron JW, Middleton C, Cowey CB (1975) Elongation and desaturation of dietary fatty acids in turbot Scophthalmus maximus L., and rainbow trout, Salmo gairdnerii rich. Lipids 10(9):528–531. https://doi.org/10.1007/BF02532354

    Article  CAS  Google Scholar 

  • Pagliarani A, Pirini M, Trigari G, Ventrella V (1986) Effect of diets containing different oils on brain fatty acid composition in sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol B 83(2):277–282

    Article  CAS  Google Scholar 

  • Peres H, Oliva-Teles A (1999) Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170:337–348

    Article  CAS  Google Scholar 

  • Peterson MS (2003) A conceptual view of environmental-habitat-protection linkages in Tidal River estuary. Rev Fish Sci 11(4):291–313

    Article  Google Scholar 

  • Potter IC, Tweedley JR, Elliott M, Whitfield AK (2015) The ways in which fish use estuaries: a refinement and expansion of the guild approach. Fish Fish 16(2):230–239. https://doi.org/10.1111/faf.12050

    Article  Google Scholar 

  • Rand WM, Pellett PL, Young VR (2003) Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr 77(1):109–127

    Article  CAS  Google Scholar 

  • Regost C, Arzel J, Robin J, Rosenlund G, Kaushik SJ (2003) Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima) 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217(1–4):465–482. https://doi.org/10.1016/S0044-8486(02)00259-4

    Article  CAS  Google Scholar 

  • Russo GL (2009) Dietary n - 6 and n - 3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77(6):937–946. https://doi.org/10.1016/j.bcp.2008.10.020

    Article  CAS  Google Scholar 

  • Saglık S, Alpaslan M, Gezgin T, Çetintürkc K, Tekinay A, Güven KC (2003) Fatty acid composition of wild and cultivated gilthead seabream (Sparus aurata) and sea bass (Dicentrarchus labrax). Eur J Lipid Sci Technol 105(2):104–107

    Article  Google Scholar 

  • Salem N, Wegher B, Menat P, Uauyt R (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci U S A 93(January):49–54

    Article  CAS  Google Scholar 

  • Santinha PJM, Gomes EFS, Coimbra JO (1996) Effects of protein level of the diet on digestibility and growth of gilthead sea bream, Sparus aurata L. Aquac Nutr 2:81–87

    Article  Google Scholar 

  • Senso L, Suárez MD, Ruiz-Cara T, García-Gallego M (2006) On the possible effects of harvesting season and chilled storage on the fatty acid profile of the fillet of farmed gilthead sea bream (Sparus aurata). Food Chem 101(1):298–307. https://doi.org/10.1016/j.foodchem.2006.01.036

    Article  CAS  Google Scholar 

  • Sérot T, Gandemer G, Demaimay M (1998) Lipid and fatty acid compositions of muscle from farmed and wild adult turbot. Aquac Int 6(5):331–343. https://doi.org/10.1023/A:1009284905854

    Article  Google Scholar 

  • Simopoulos AP (2009) Omega-6/Omega-3 essential fatty acids: biological effects. In: Simopoulos AP, Bazan NG (eds) Omega-3 fatty acids, the brain and retina, vol 99. Karger: World Review of Nutrition and Dietetics, Basel, pp 1–16

    Google Scholar 

  • SNIRH (2017) Dados de base - Monitorização, retrieved from https://snirh.apambiente.pt/. Accessed in 16 July 2017

  • Teodósio MA, Paris CB, Wolanski E, Morais P (2016) Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas. Estuar Coast Shelf Sci 183:187–202. https://doi.org/10.1016/j.ecss.2016.10.022

    Article  Google Scholar 

  • Thies F, Garry JMC, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, Grimble RF (2003) Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–485

    Article  CAS  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184. https://doi.org/10.1080/713610925

    Article  CAS  Google Scholar 

  • Tocher DR, Dick JR (2001) Effects of essential fatty acid deficiency and supplementation with docosahexaenoic acid (DHA; 22: 6n-3) on cellular fatty acid compositions and fatty acyl desaturation in a cell culture model. Prostaglandins Leukot Essent Fatty Acids 64(1):11–22

    Article  CAS  Google Scholar 

  • USDA (2016) USDA national nutrient database for standard reference. Retrieved from https://ndb.nal.usda.gov/ndb. Accessed Apr 2018 and Jan 2019.

  • Van Immerseel F, Cauwerts K, Devriese LA, Haesebrouck F, Ducatelle R (2002) Feed additives to control Salmonella in poultry. Worlds Poult Sci J 58(4):501–513

    Article  Google Scholar 

  • Vergara JM, López-Calero G, Robaina L, Caballero MJ, Montero D, Izquierdo MS, Aksnes A (1999) Growth, feed utilization and body lipid content of gilthead seabream (Sparus aurata) fed increasing lipid levels and fish meals of different quality. Aquaculture 179(1–4):35–44. https://doi.org/10.1016/S0044-8486(99)00150-7

    Article  CAS  Google Scholar 

  • Webster-Gandy J, Madden A, Holdsworth M (2006) Oxford handbook of nutrition and dietetics. Oxford Handbooks, 289–292. https://doi.org/10.1017/CBO9781107415324.004

  • WHO/FAO/UNU (2007) Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series (935):1–265. https://doi.org/ISBN 92 4 120935 6

  • Wootton RJ (1990) Ecology of teleost fishes (vol. 1). Robert J. Wootton

Download references

Funding

This study was supported by Fundação para a Ciência e a Tecnologia (FCT) through the strategic projects UID/MAR/04292/2013 granted to Marine and Environmental Sciences Centre (MARE) and UID/AMB/50017/2013 granted to Centro de Estudos do Ambiente e do Mar (CESAM) and QOPNA (UID/QUI/00062/2013). A. M. M. Gonçalves and C. Nunes thank FCT for the financial support provided through the post-doctoral grants SFRH/BPD/97210/2013 and SFRH/BPD/100627/2014, respectively, co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013), European Social Fund (EU), and the program POPH/FSE. A. M. M. Gonçalves also acknowledges University of Coimbra for the contract IT057-18-7253. This research was partially supported by PORBIOTA, E-Infrastructure Portuguese Information and Research in Biodiversity (POCI-01-0145-FEDER-022127), supported by Competitiveness and Internationalization Operational Programme and Regional Operational Programme of Lisbon, through FEDER, and by the Portuguese Foundation for Science and Technology (FCT), through national funds (OE) and partially supported by the Regional Operational Programme CENTRO2020 within the scope of the project CENTRO-01-0145-FEDER-000006.The authors also thank the support given by the aquacultures involved in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina P. Rocha.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, C.P., Cabral, H.N., Nunes, C. et al. Biochemical impacts in adult and juvenile farmed European seabass and gilthead seabream from semi-intensive aquaculture of southern European estuarine systems. Environ Sci Pollut Res 26, 13422–13440 (2019). https://doi.org/10.1007/s11356-019-04825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04825-8

Keywords

Navigation