Skip to main content
Log in

Brain development and assessing the supply of polyunsaturated fatty acid

  • Published:
Lipids

Abstract

Membrane lipids are necessary for structure and function of the developing nervous system. Rapid synthesis of brain tissue occurs during the last trimester of development of the human brain and the early postnatal weeks. This synthesis of brain structure involves the formation of complex lipids, many of which contain significant quantities of chain-elongated desaturated homologs of essential fatty acids. The present report discusses the implications of change in nutritional status on processes of brain development and metabolic events that involve lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobbing, J., and Sands, J. (1979) Comparative Aspects of the Brain Growth Spurt, Early Hum. Dev. 3/1, 79–83.

    Article  Google Scholar 

  2. Herschkowitz, N. (1989) Brain Development and Nutrition, in Developmental Neurobiology (Evrard, P., and Minkowski, A., eds.) Nestlé Nutrition Workshop Series, Raven Press, New York, p. 297.

    Google Scholar 

  3. Dobbing, J. (1990) Early Nutrition and Later Achievement, Proc. Nutr. Soc. 49, 103–118.

    Article  PubMed  CAS  Google Scholar 

  4. Gottlieb, A., Keyder, I., and Epstein, H.T. (1977) Rodent Brain Growth Stages: An Analytical Review, Biol. Neonat. 32, 166–176.

    CAS  Google Scholar 

  5. Albers, R.W. (1985) Coordination of Brain Metabolism with Function During Development, in Developmental Neurochemistry (Wiggins, R.C., McCandles, D.W., and Enna, S.J., eds.) University of Texas Press, Austin, pp. 180–192.

    Google Scholar 

  6. Cowan, W.M. (1979) The Development of the Brain, in The Brain a Scientific American Book, W.H. Freeman and Company, New York, p. 56.

    Google Scholar 

  7. Jacobson, M. (1970) Histogenesis and Morphogenesis of the Nervous System, in Developmental Neurobiology, Holt, Rinehart and Winston, New York, pp. 1–74.

    Google Scholar 

  8. McLean, P.D. (1970) The Triune Brain, Emotion and Scientific Bias, in The Neurosciences: Second Study Program (Schmitt, F.O., ed.) Rockefeller University Press, New York, pp. 336–348.

    Google Scholar 

  9. Marshall, W.A. (1968) The Growth of the Brain, in Development of the Brain, Oliver and Boyd, Edinburgh, pp. 1–14.

    Google Scholar 

  10. Dobbing, J. (1968) Vulnerable Periods in Developing Brain, in Applied Neurochemistry (Davison, A.N., and Dobbing, J., eds.) F.A. Davis and Co., Philadelphia, pp. 287–316.

    Google Scholar 

  11. Dobbing, J. (1971) Undernutrition and the Developing Brain: The Use of Animal Models to Elucidate the Human Problem, Adv. Exp. Med. Biol. 13, 399–412.

    CAS  Google Scholar 

  12. Morgane, P.J., Austin-Lafrance, R., Bronzino, J., Tonkiss, J., Diaz-Cintra, S., Cintra, L., Kemper, T., and Caller, J.R. (1993) Prenatal Malnutrition and Development of the Brain, Neurosci. Biobehav. Rev. 17, 91–128.

    Article  PubMed  CAS  Google Scholar 

  13. Hartenstein, V. (1989) Early Neurogenesis in Xenopus: The Spatiotemporal Pattern of Proliferation and Cell Lineages in the Embryonic Spinal Cord, Neuron 3, 399–411.

    Article  PubMed  CAS  Google Scholar 

  14. Lou, H.C. (1982) Developmental Neurology, Raven Press, New York, Chapters 1 and 2, pp. 1–132.

    Google Scholar 

  15. Bayer, S.A. (1985) The Development of the CNS, in Developmental Neurochemistry (Wiggins, D.W., McCandles, D.W., and Enna, S.J., eds.) University of Texas Press, Austin, pp. 8–46.

    Google Scholar 

  16. Das, G.D. (1977) Gliogenesis During Early Embryonic Development in the Rat, Experientia 33, 1648–1649.

    Article  PubMed  CAS  Google Scholar 

  17. Rodier, P.M. (1980) Chronology of Neuron Development: Animal Studies and Their Clinical Implications, Dev. Med. Child Neurol. 22, 525–545.

    Article  PubMed  CAS  Google Scholar 

  18. Bayer, S.A., and Altman, J. (1975) Radiation-Induced Interference with Postnatal Hippocampal Cytogenesis in Rats and Its Long-Term Effects on the Acquisition of Neurons and Glia, J. Comp. Neurol. 163 1–20.

    Article  Google Scholar 

  19. Bayer, S.A. (1977) Glial Recovery Patterns in Rat Corpus Collosum After X-Irradiation During Infancy, Exp. Neurol. 54, 209–216.

    Article  PubMed  CAS  Google Scholar 

  20. Sjöstrand, J. (1965) Proliferative Changes in Glial Cells During Nerve Regeneration, Z. Zellforsch Mikrosk. Anat. 68, 481–493.

    Article  PubMed  Google Scholar 

  21. Vitiello, F., and Gombos, G. (1987) Cerebellar Development and Nutrition, in Basic and Clinical Aspects of Nutrition and Brain Development (Rassin, D.K., Haber, B., and Drujan, B., eds.) Alan R. Liss Inc., pp. 99–130.

  22. Greenwood, C.E., and Craig, R.E.A. (1987) Dietary Influences on Brain Function: Implications During Periods of Neuronal Maturation, in Current Topics in Nutrition and Disease, Alan R. Liss Inc., New York, Vol. 16, pp. 159–216.

    Google Scholar 

  23. Dobbing, J. (1970) Undernutrition and the Developing Brain, in Developmental Neurobiology, (Himwich, W.A., ed.) Charles C. Thomas, Springfield, pp. 241–261.

    Google Scholar 

  24. Winick, M. (1969) Malnutrition and Brain Development, J. Pediatr. 74, 667–679.

    Article  PubMed  CAS  Google Scholar 

  25. Rakic, P.J. (1977) Genesis of the Dorsal Lateral Geniculate Nucleus in the Rhesus Monkey: Site and Time of Origin, Kinetics and Proliferation, Routes of Migration and Pattern of Distribution of Neurons, Comp. Neurol. 176, 23–52.

    Article  CAS  Google Scholar 

  26. Angevine, J.B., and Sidman, R.L. (1961) Autoradiographic Study of Cell Migration During Histogenesis of Cerebral Cortex in the Mouse, Nature, 192, 766–768.

    Article  PubMed  Google Scholar 

  27. Jacobson, M. (1978) in Developmental Neurobiology, 2nd edn., Plenum Press, New York, pp. 115–210.

    Google Scholar 

  28. Bayer, S.A. (1989) Cellular Aspects of Brain Development, Neurotoxicology 10, 307–320.

    PubMed  CAS  Google Scholar 

  29. Heuther, G. (1990) Malnutrition and Developing Synaptic Transmitter Systems: Lasting Effects, Functional Implications, in (Mal) Nutrition and the Infant Brain (van Gelder, N.M., Butterworth, R.F., and Drujan, B.D., eds.) Wiley-Liss, New York, pp. 141–156.

    Google Scholar 

  30. Sastry, P.S. (1985) Lipids of the Nervous Tissue: Composition and Metabolism, Prog. Lipid Res. 24, 69–176.

    Article  PubMed  CAS  Google Scholar 

  31. Bourre, J.M., Bonneil, M., Clement, M., Dumont, O., Durand, G., Lafont, H., Nalbone, G., and Lafont, H. (1993) Function of Dietary Polyunsaturated Fatty Acids in the Nervous System, Prostaglandins Leukotrienes Essent. Fatty Acids 48, 5–15.

    Article  CAS  Google Scholar 

  32. Dyer J.R., and Greenwood, C.E. (1991) Neural 22-Carbon Fatty Acids in the Weanling Rat Respond Rapidly and Specifically to a Range of Dietary Linoleic Acid to α-Linolenic Fatty Acid Ratios, J. Neurochem. 56, 1921–1931.

    Article  PubMed  CAS  Google Scholar 

  33. Brenner, R.R. (1984) Effect of Unsaturated Acids on Membrane Structure and Enzyme Kinetics, Prog. Lipid Res. 23, 69–96.

    Article  PubMed  CAS  Google Scholar 

  34. Stubbs, C.D., and Smith, A.D. (1984) The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function, Biochim. Biophys. Acta 79, 89–137.

    Google Scholar 

  35. Foot, M., Cruz, T.F., and Clandinin, M.T. (1983) Effect of Dietary Lipid on Synaptosomal Acetylcholinesterase Activity, Biochem. J. 211, 507–509.

    PubMed  CAS  Google Scholar 

  36. Foot, M., Cruz, T.F., and Clandinin, M.T. (1982) Influence of Dietary Fat on the Lipid Composition of Rat Brain Synaptosomal and Microsomal Membranes, Biochem. J. 208, 631–641.

    PubMed  CAS  Google Scholar 

  37. Rouser, G., Yamamoto, A., and Kritchevsky, G. (1971) Cellular Membranes. Structure and Regulation of Lipid Class Composition Species Differences, Changes with Age and Variations in Some Pathological States, Arch. Int. Med. 127, 1105–1121.

    Article  CAS  Google Scholar 

  38. Wykle, R.L. (1977) in Lipid Metabolism in Mammals (Snyder, F., ed.) Plenum Press, New York, pp. 317–366.

    Google Scholar 

  39. Svennerholm, L., and Ställberg-Stenhagen, S. (1968) Changes in the Fatty Acid Composition of Cerebrosides and Sulfatides of Human Nervous Tissue with Age, J. Lipid Res. 9, 215–225.

    PubMed  CAS  Google Scholar 

  40. Senterre, J. (1987) Nutrition of Premature Babies, in Feeding the Sick Infant (Stern, L., ed.) Nestlé Nutrition Workshop Series, Raven Press, New York, pp. 191–197.

    Google Scholar 

  41. Clandinin, M.T., Chappell, J.E., Heim, T., Swyer, P.R., and Chance, G.W. (1981) Fatty Acid Utilization in Perinatal de novo Synthesis of Tissues, Early Hum. Dev. 5, 355–366.

    Article  PubMed  CAS  Google Scholar 

  42. Verellen, G., Heim T., Smith, J.M., Swyer, P., Atkinson, S.A., and Anderson G.H. (1979) Partition of Metabolisable Energy (ME) in AGA Premature Infants <1300 mg Birth Weight, Age 1–4 Weeks, Pediatr. Res. 13, 409.

    Google Scholar 

  43. Jones, P.J.H., Pencharz, P.B., and Clandinin, M.T. (1985) Whole Body Oxidation of Dietary Fatty Acids: Implications for Energy Utilization, Am. J. Clin. Nutr. 42, 769–777.

    PubMed  CAS  Google Scholar 

  44. Widdowson, E.M. (1968) Growth and Composition of the Human Fetus and Newborn, in Biology of Gestation (Assali, N.S., ed.) Academic Press, New York, Vol. 2, pp. 1–49.

    Google Scholar 

  45. Widdowson, E.M., Southgate, D.A.T., and Hay, E.N. (1979) in Proceedings of the Fifth Nutricia Symposium on Nutrition and Metabolism of the Fetus and Infant (Visser, H.K.A., ed.) Martinus Nijhoff, The Hague, pp. 169–177.

    Google Scholar 

  46. Clandinin, M.T., Chappell, J.E., Heim, T., Swyer, P.R., and Chance, G.W. (1981) Fatty Acid Accretion in Fetal and Neonatal Liver: Implications for Fatty Acid Requirements, Early Hum. Dev. 5, 7–14.

    Article  PubMed  CAS  Google Scholar 

  47. Van Houwelingen, A.C., Puls, J., and Hornstra, G. (1992) Essential Fatty Acid Status During Early Human Development, Early Hum. Dev. 31, 97–111.

    Article  PubMed  Google Scholar 

  48. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980) Intrauterine Fatty Acid Accretion Rates in Human Brain: Implications for Fatty Acid Requirements, Early Hum. Dev. 4/2, 121–129.

    Article  Google Scholar 

  49. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980) Extrauterine Fatty Acid Accretion in Infant Brain: Implications for Fatty Acid Requirements, Early Hum. Dev. 4/2, 131–138.

    Article  Google Scholar 

  50. Menon, N.K., and Dhopeskwarkar, G.A. (1982) Essential Fatty Acid Deficiency and Brain Development, Prog. Lipid Res. 21, 309–326.

    Article  PubMed  CAS  Google Scholar 

  51. Cook H.W. (1978) In vitro Formation of Polyunsaturated Fatty Acids by Desaturation in Rat Brain: Some Properties of the Enzymes in Developing Brain and Comparisons with Liver, J. Neurochem. 30, 1327–1334.

    Article  PubMed  CAS  Google Scholar 

  52. Smith, S., and Abraham, S. (1970) Fatty Acid Synthesis in Developing Mouse Liver, Arch. Biochem. Biophys. 136, 112–121.

    Article  PubMed  CAS  Google Scholar 

  53. Crastes de Paulet, P., Sarda, P., Boulot, P., and Crastes de Paulet, A. (1992) Fatty Acids Blood Composition in Foetal and Maternal Plasma, in Essential Fatty Acids in Infant Nutrition (Ghisolfi, J., and Putet, G., eds.) John Libbey Eurotext, Montrouge, France.

    Google Scholar 

  54. Crawford, M.A., Hall, B., Laurance, B.M., and Munhambo, A. (1976) Milk Lipids and Their Variability, Curr. Med. Res. Opinion 4 (Suppl. 1), 33–43.

    CAS  Google Scholar 

  55. Neuringer, M., Connor, W.E., Van Patten, C., and Barstad, L. (1984) Dietary ω-3 Fatty Acid Deficiency and Visual Loss in Infant Rhesus Monkeys, J. Clin. Invest. 83, 272–276.

    Google Scholar 

  56. Uauy, R.M., Treen, M., and Hoffman, D.R. (1989) Essential Fatty Acid Metabolism and Requirements During Development, Semin. Perinatol. 13, 118–130.

    PubMed  CAS  Google Scholar 

  57. King, K.C., Adam, P.A.J., Laskowski, D.E., and Schwartz, R. (1971) Sources of Fatty Acids in the Newborn, Pediatrics 47, 192–198.

    PubMed  Google Scholar 

  58. Poissennet, C.M., LaVelle, M., and Burdi, A.R. (1988) Growth and Development of Adipose Tissue, J. Pediatr. 113, 1–9.

    Article  Google Scholar 

  59. Robertson, A.F., and Sprecher, H. (1968) A Review of Human Placental Lipid Metabolism and Transport, Acta Pediatr. Scand. (Suppl.) 183, 2–18.

    Google Scholar 

  60. Jensen, R.G. (1989) The Lipids of Human Milk, CRC Press Inc., Boca Raton, pp. 93–151.

    Google Scholar 

  61. Clandinin, M.T., Chappell, J.E., and Van Aerde, J.E. (1989) Requirements of Newborn Infants for Long-Chain Polyunsaturated Fatty Acids, Acta Pediatr. Scand. Suppl. 351, 63–71.

    Article  CAS  Google Scholar 

  62. Aggett, P.R., Haschke, R., and Heine, W., Hernell, O., Koletzko, B., Launiala, K., Rey, J., Rubino, A., Schöch, G., Senterre, J., and Tormo, R. (1991) Comment on the Content and Composition of Lipids in Infant Formulas, ESPGAN Committee on Nutrition, Acta Pediatr. Scand. 80, 887–896.

    CAS  Google Scholar 

  63. Reichlmayr-Lais, A.M., Stangl, G.I., Kirchgessner, M., and Eder, K. (1994) Fatty Acid Composition of Brain and Heart of Rats Fed Various Dietary Oils, Nutr. Res. 14, 829–840.

    Article  CAS  Google Scholar 

  64. Yonekubo, A., Honda, S., Okano, M., Takahashi, K., and Yamamoto, Y. (1993) Dietary Fish Oil Alters Rat Milk Composition and Liver and Brain Fatty Acid Composition of Fetal and Neonatal Rats, J. Nutr. 123, 1703–1708.

    PubMed  CAS  Google Scholar 

  65. Wainwright, P.E., Huang, Y.S., Bulman-Fleming, B., Mills, D.E., Redden, P., and McCutcheon, D. (1992) The Effects of Dietary n−3/n−6 Ratio on Brain Development in the Mouse: A Dose Response Study with Long-Chain n−3 Fatty Acids, Lipids 27, 98–103.

    PubMed  CAS  Google Scholar 

  66. Carlson, S.E., Cooke, R.J., Rhodes, P.G., Peeples, J.M., Werkman, S.H., and Tolley, E.A. (1991) Long-Term Feeding of Formulas High in Linolenic Acid and Marine Oil to Very Low Birth Weight Infants: Phospholipid Fatty Acids, Pediatr. Res. 30, 404–412.

    PubMed  CAS  Google Scholar 

  67. Philbrick, D.J., Mahadevappa, V.G., Ackman, R.G., and Holub, B.J. (1987) Ingestion of Fish Oil or a Derived n−3 Fatty Acid Concentrate Containing Eicosapentaenoic Acid (EPA) Affects Fatty Acid Compositions of Individual Phospholipids of Rat Brain, Sciatic Nerve and Retina, J. Nutr. 117, 1663–1670.

    PubMed  CAS  Google Scholar 

  68. Carlson, S.E., Workman, S.H., Peeples, J.M., Cooke, R.J., and Tolley, E.A. (1993) Arachidonic Acid Status Correlates with First Year Growth in Preterm Infants, Proc. Natl. Acad. Sci. USA 58, 35–42.

    CAS  Google Scholar 

  69. Koletzko, B., and Braun, M. (1991) Arachidonic Acid and Early Human Growth: Is There a Relation? Ann. Nutri. Metab. 35, 128–131.

    Article  CAS  Google Scholar 

  70. Garg, M.L., Thomson A.B.R., and Clandinin, M.T. (1989) Effect of Dietary Fish Oil on Tissue Lipid Metabolism, in Health Effects of Fish Oils (Chandra, R.K., ed.) ARTS Biomedical Publishers and Distributors, St John’s, Newfoundland, pp. 53–79.

    Google Scholar 

  71. Mohrhauer, H., and Holman, R.T. (1963) Alteration of the Fatty Acid Composition of Brain Lipids by Varying Levels of Dietary Essential Fatty Acids, J. Neurochem. 10, 523–530.

    Article  PubMed  CAS  Google Scholar 

  72. Bourre, J.M., Bonneil, M., Dumont, O., Piciotti, M., Nalbone, G., and Lafont H. (1988) High Dietary Fish Oil Alters the Brain Polyunsaturated Fatty Acid Composition, Biochim. Biophys. Acta 960, 458–461.

    PubMed  CAS  Google Scholar 

  73. Anding, R.A., and Hwang, D.H. (1986) Effects of Dietary Linolenate on the Fatty Acid Composition of Brain Lipids in Rats, Lipids 211, 697–701.

    Google Scholar 

  74. Jumpsen, J. (1997) Diets Varying in (n−3) and (n−6) Fatty Acid Content Produce Differences in Phosphatidylethanolamine and Phosphatidylcholine Fatty Acid Composition During Development of Neuronal and Glial Cells in Rats, J. Nutr., in press.

  75. Reeke, G.N., and Sporns O. (1993) Behaviorally Based Modeling and Computational Approaches to Neuroscience, Annu. Rev. Neurosci. 16, 597–623.

    Article  PubMed  Google Scholar 

  76. Strupp, B.J., Himmelstein, S., Bunsey, M., Levitsky, D.A., and Kesler, M. (1990) Cognitive Profile of Rats Exposed to Lactational Hyperphenylalaninemia: Correspondence with Human Mental Retardation, Dev. Psychobiol. 23, 195–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Clandinin.

About this article

Cite this article

Clandinin, M.T. Brain development and assessing the supply of polyunsaturated fatty acid. Lipids 34, 131–137 (1999). https://doi.org/10.1007/s11745-999-0347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0347-y

Keywords

Navigation