Skip to main content

Advertisement

Log in

Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons

  • Sleep Breathing Physiology and Disorders • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) is a common respiratory disorder. Multiple organs, especially the central nervous system (CNS), are damaged, and dysfunctional when intermittent hypoxia (IH) occurs during sleep for a long time. The quality of life of individuals with OSA is significantly impacted by cognitive decline, which also escalates the financial strain on their families. Consequently, the development of novel therapies becomes imperative. IH induces oxidative stress, endoplasmic reticulum stress, iron deposition, and neuroinflammation in neurons. Synaptic dysfunction, reactive gliosis, apoptosis, neuroinflammation, and inhibition of neurogenesis can lead to learning and long-term memory impairment. In addition to nerve injury, the role of IH in neuroprotection was also explored. While causing neuron damage, IH activates the neuronal self-repairing mechanism by regulating antioxidant capacity and preventing toxic protein deposition. By stimulating the proliferation and differentiation of neural stem cells (NSCs), IH has the potential to enhance the ratio of neonatal neurons and counteract the decline in neuron numbers. This review emphasizes the perspectives and opportunities for the neuroprotective effects of IH and informs novel insights and therapeutic strategies in OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bucks RS, Olaithe M, Rosenzweig I, Morrell MJ (2017) Reviewing the relationship between OSA and cognition: where do we go from here? Respirology 22:1253–1261. https://doi.org/10.1111/resp.13140

    Article  PubMed  Google Scholar 

  2. Li M, Sun Z, Sun H, Zhao G, Leng B, Shen T, Xue S, Hou H, Li Z, Zhang J (2022) Paroxysmal slow wave events are associated with cognitive impairment in patients with obstructive sleep apnea. Alzheimers Res Ther 14:200. https://doi.org/10.1186/s13195-022-01153-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu J, Zhu Z, Ren Y, Dong Y, Li Y, Yang X (2020) Role of the Nrdp1 in brain injury induced by chronic intermittent hypoxia in rats via regulating the protein levels of ErbB3. Neurotox Res 38:124–132. https://doi.org/10.1007/s12640-020-00195-z

    Article  CAS  PubMed  Google Scholar 

  4. Snyder B, Duong P, Trieu J, Cunningham RL (2018) Androgens modulate chronic intermittent hypoxia effects on brain and behavior. Horm Behav 106:62–73. https://doi.org/10.1016/j.yhbeh.2018.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang MH, Han XX, Lu Y, Deng JJ, Zhang WH, Mao JQ, Mi J, Ding WH, Wu MJ, Yu LM, Liu YH (2023) Chronic intermittent hypoxia impaired collagen synthesis in mouse genioglossus via ROS accumulation: a transcriptomic analysis. Respir Physiol Neurobiol 308:103980. https://doi.org/10.1016/j.resp.2022.103980

    Article  CAS  PubMed  Google Scholar 

  6. Zhu R, Mi X, Li Y (2022) Effects of hypoxic environment on periodontal tissue through the ROS/TXNIP/NLRP3 inflammasome pathway. Biomed Res Int 2022:7690960. https://doi.org/10.1155/2022/7690960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wimmer ME, Blackwell JM, Abel T (2020) Rolipram treatment during consolidation ameliorates long-term object location memory in aged male mice. Neurobiol Learn Mem 169:107168. https://doi.org/10.1016/j.nlm.2020.107168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hagihara H, Shoji H, Kuroiwa M, Graef IA, Crabtree GR, Nishi A, Miyakawa T (2022) Forebrain-specific conditional calcineurin deficiency induces dentate gyrus immaturity and hyper-dopaminergic signaling in mice. Mol Brain 15:94. https://doi.org/10.1186/s13041-022-00981-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barak T, Miller O, Melamed S, Tietel Z, Harari M, Belausov E, Elmann A (2022) Neuroprotective effects of Pulicaria incisa infusion on human neuroblastoma cells and hippocampal neurons. Antioxidants (Basel) 12. https://doi.org/10.3390/antiox12010032

  10. An JR, Zhao YS, Luo LF, Guan P, Tan M, Ji ES (2020) Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci 250:117573. https://doi.org/10.1016/j.lfs.2020.117573

    Article  CAS  PubMed  Google Scholar 

  11. Ling J, Yu Q, Li Y, Yuan X, Wang X, Liu W, Guo T, Duan Y, Li L (2020) Edaravone improves intermittent hypoxia-induced cognitive impairment and hippocampal damage in rats. Biol Pharm Bull 43:1196–1201. https://doi.org/10.1248/bpb.b20-00085

    Article  CAS  PubMed  Google Scholar 

  12. Kartal O, Aydinoz S, Kartal AT, Kelestemur T, Caglayan AB, Beker MC, Karademir F, Suleymanoglu S, Kul M, Yulug B, Kilic E (2016) Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3. Metab Brain Dis 31:827–835. https://doi.org/10.1007/s11011-016-9816-z

    Article  CAS  PubMed  Google Scholar 

  13. Guo H, Lin W, Yang L, Qiu Y, Kuang Y, Yang H, Zhang C, Li L, Li D, Tang R, Zhang X (2021) Sub-chronic exposure to ammonia inhibits the growth of juvenile Wuchang bream (Megalobrama amblycephala) mainly by downregulation of growth hormone/insulin-like growth factor axis. Environ Toxicol 36:1195–1205. https://doi.org/10.1002/tox.23118

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Forsberg K, Wuttke A, Quadrato G, Chumakov PM, Wizenmann A, Di Giovanni S (2013) The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci 33:14318–14330. https://doi.org/10.1523/JNEUROSCI.1056-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71. https://doi.org/10.1016/j.stem.2010.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khuu MA, Pagan CM, Nallamothu T, Hevner RF, Hodge RD, Ramirez JM, Garcia AJ 3rd (2019) Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci 39:1320–1331. https://doi.org/10.1523/JNEUROSCI.1359-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gozal D, Row BW, Gozal E, Kheirandish L, Neville JJ, Brittian KR, Sachleben LR Jr, Guo SZ (2003) Temporal aspects of spatial task performance during intermittent hypoxia in the rat: evidence for neurogenesis. Eur J Neurosci 18:2335–2342. https://doi.org/10.1046/j.1460-9568.2003.02947.x

    Article  PubMed  Google Scholar 

  18. Pedroso D, Nunes AR, Diogo LN, Oudot C, Monteiro EC, Brenner C, Vieira HLA (2016) Hippocampal neurogenesis response: what can we expect from two different models of hypertension? Brain Res 1646:199–206. https://doi.org/10.1016/j.brainres.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  19. Stoyanova II, Klymenko A, Willms J, Doeppner TR, Tonchev AB, Lutz D (2022) Ghrelin regulates expression of the transcription factor Pax6 in hypoxic brain progenitor cells and neurons. Cells 11. https://doi.org/10.3390/cells11050782

  20. Meyer P, Grandgirard D, Lehner M, Haenggi M, Leib SL (2020) Grafted neural progenitor cells persist in the injured site and differentiate neuronally in a rodent model of cardiac arrest-induced global brain ischemia. Stem Cells Dev 29:574–585. https://doi.org/10.1089/scd.2019.0190

    Article  CAS  PubMed  Google Scholar 

  21. Cai SL, Yang YS, Ding YF, Yang SH, Jia XZ, Gu YW, Wood C, Huang XT, Yang JS, Yang WJ (2022) SETD4 cells contribute to brain development and maintain adult stem cell reservoir for neurogenesis. Stem Cell Reports 17:2081–2096. https://doi.org/10.1016/j.stemcr.2022.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia J, Peng H, Tian R, Zhou H, Zheng H, Liu B, Lu Y (2023) Gm527 deficiency in dentate gyrus improves memory through upregulating dopamine D1 receptor pathway. CNS Neurosci Ther 29:3290–3306. https://doi.org/10.1111/cns.14259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palsa K, Baringer SL, Shenoy G, Spiegelman VS, Simpson IA, Connor JR (2023) Exosomes are involved in iron transport from human blood-brain barrier endothelial cells and are modified by endothelial cell iron status. J Biol Chem 299:102868. https://doi.org/10.1016/j.jbc.2022.102868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramavath HN, Konda V, Pullakhandam R (2023) Quercetin inhibits hephaestin expression and iron transport in intestinal cells: possible role of PI3K pathway. Nutrients 15. https://doi.org/10.3390/nu15051205

  25. Guan X, Guo T, Zhou C, Wu J, Zeng Q, Li K, Luo X, Bai X, Wu H, Gao T, Gu L, Liu X, Cao Z, Wen J, Chen J, Wei H, Zhang Y, Liu C, Song Z et al (2022) Altered brain iron depositions from aging to Parkinson's disease and Alzheimer's disease: a quantitative susceptibility mapping study. Neuroimage 264:119683. https://doi.org/10.1016/j.neuroimage.2022.119683

    Article  CAS  PubMed  Google Scholar 

  26. Raha AA, Biswas A, Henderson J, Chakraborty S, Holland A, Friedland RP, Mukaetova-Ladinska E, Zaman S, Raha-Chowdhury R (2022) Interplay of ferritin accumulation and ferroportin loss in ageing brain: implication for protein aggregation in down syndrome dementia, Alzheimer's, and Parkinson's diseases. Int J Mol Sci 23. https://doi.org/10.3390/ijms23031060

  27. Seifen C, Pordzik J, Huppertz T, Hackenberg B, Schupp C, Matthias C, Simon P, Gouveris H (2023) Serum ferritin levels in severe obstructive sleep apnea. Diagnostics (Basel) 13. https://doi.org/10.3390/diagnostics13061154

  28. Zhang Y, Bai X, Zhang Y, Yao S, Cui Y, You LH, Yu P, Chang YZ, Gao G (2022) Hippocampal iron accumulation impairs synapses and memory via suppressing furin expression and downregulating BDNF maturation. Mol Neurobiol 59:5574–5590. https://doi.org/10.1007/s12035-022-02929-w

    Article  CAS  PubMed  Google Scholar 

  29. Wall AM, Corcoran AE, O'Halloran KD, O'Connor JJ (2014) Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis 62:8–17. https://doi.org/10.1016/j.nbd.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  30. Qian ZM, Wu XM, Fan M, Yang L, Du F, Yung WH, Ke Y (2011) Divalent metal transporter 1 is a hypoxia-inducible gene. J Cell Physiol 226:1596–1603. https://doi.org/10.1002/jcp.22485

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Gou YJ, Zhang Y, Li J, Han K, Xu Y, Li H, You LH, Yu P, Chang YZ, Gao G (2020) Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-beta induced brain damage in mice. Cell Death Dis 6:113. https://doi.org/10.1038/s41420-020-00346-3

    Article  CAS  Google Scholar 

  32. Zhou Z, You B, Ji C, Zhang L, Wu F, Qian H (2023) Implications of crosstalk between exosome-mediated ferroptosis and diseases for pathogenesis and treatment. Cells 12. https://doi.org/10.3390/cells12020311

  33. Wang S, Chen C, Yu L, Mueller J, Rausch V, Mueller S (2021) Bone morphogenetic protein 6-mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro. J Biol Chem 297:101378. https://doi.org/10.1016/j.jbc.2021.101378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng Y, Liao B, Zhou Y, Zeng W, Zeng ZY (2022) Atorvastatin inhibits ferroptosis of H9C2 cells by regulating SMAD7/hepcidin expression to improve ischemia-reperfusion injury. Cardiol Res Pract 2022:3972829. https://doi.org/10.1155/2022/3972829

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xiong XY, Liu L, Wang FX, Yang YR, Hao JW, Wang PF, Zhong Q, Zhou K, Xiong A, Zhu WY, Zhao T, Meng ZY, Wang YC, Gong QW, Liao MF, Wang J, Yang QW (2016) Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage. Circulation 134:1025–1038. https://doi.org/10.1161/CIRCULATIONAHA.116.021881

    Article  CAS  PubMed  Google Scholar 

  36. Abakay O, Abakay A, Palanci Y, Yuksel H, Selimoglu Sen H, Evliyaoglu O, Tanrikulu AC (2015) Relationship between hepcidin levels and periodic limb movement disorder in patients with obstructive sleep apnea syndrome. Sleep Breath 19:459–466. https://doi.org/10.1007/s11325-014-1028-3

    Article  PubMed  Google Scholar 

  37. Baik I, Lee S, Thomas RJ, Shin C (2019) Obstructive sleep apnea, low transferrin saturation levels, and male-pattern baldness. Int J Dermatol 58:67–74. https://doi.org/10.1111/ijd.14193

    Article  PubMed  Google Scholar 

  38. Liu Y, Yu Z, Hua D, Chen Y, Zheng S, Wang L (2015) Association of serum hepcidin levels with the presence and severity of obstructive sleep apnea syndrome. Med Sci Monit 21:27–31. https://doi.org/10.12659/MSM.891297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao YS, Tan M, Song JX, An JR, Yang XY, Li WY, Guo YJ, Ji ES (2021) Involvement of hepcidin in cognitive damage induced by chronic intermittent hypoxia in mice. Oxidative Med Cell Longev 2021:8520967. https://doi.org/10.1155/2021/8520967

    Article  CAS  Google Scholar 

  40. Xie H, Leung KL, Chen L, Chan YS, Ng PC, Fok TF, Wing YK, Ke Y, Li AM, Yung WH (2010) Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis 40:155–162. https://doi.org/10.1016/j.nbd.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  41. Na Y, Hall A, Yu Y, Hu L, Choi K, Burgard JA, Szabo S, Huang G, Ratner N, Wu J (2023) Runx1/3-driven adaptive endoplasmic reticulum stress pathways contribute to neurofibromagenesis. Oncogene. https://doi.org/10.1038/s41388-023-02620-x

  42. Han JL, Wang W, Jiang ZS, Kong DL, Shen H, Qin Z, Wang L, Huang H, Jiang DD, Kang J (2016) The expression of serum endoplasmic reticulum stress protein-78 in obstructive sleep apnea patients. Zhonghua Nei Ke Za Zhi 55:298–301. https://doi.org/10.3760/cma.j.issn.0578-1426.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  43. Xu L, Bi Y, Xu Y, Wu Y, Du X, Mou Y, Chen J (2021) Suppression of CHOP reduces neuronal apoptosis and rescues cognitive impairment induced by intermittent hypoxia by inhibiting Bax and Bak activation. Neural Plast 2021:4090441. https://doi.org/10.1155/2021/4090441

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cai XH, Li XC, Jin SW, Liang DS, Wen ZW, Cao HC, Mei HF, Wu Y, Lin ZD, Wang LX (2014) Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats. Exp Neurol 257:148–156. https://doi.org/10.1016/j.expneurol.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  45. You C, Zhang Z, Ying H, Yang Z, Ma Y, Hong J, Xue M, Li X, Li H, Zhang C, Wang W, Cai X, Li X (2023) Blockage of calcium-sensing receptor improves chronic intermittent hypoxia-induced cognitive impairment by PERK-ATF4-CHOP pathway. Exp Neurol 368:114500. https://doi.org/10.1016/j.expneurol.2023.114500

    Article  CAS  PubMed  Google Scholar 

  46. Chou YT, Zhan G, Zhu Y, Fenik P, Panossian L, Li Y, Zhang J, Veasey S (2013) C/EBP homologous binding protein (CHOP) underlies neural injury in sleep apnea model. Sleep 36:481–492. https://doi.org/10.5665/sleep.2528

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arnaud C, Bochaton T, Pepin JL, Belaidi E (2020) Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Arch Cardiovasc Dis 113:350–358. https://doi.org/10.1016/j.acvd.2020.01.003

    Article  PubMed  Google Scholar 

  48. Htoo AK, Greenberg H, Tongia S, Chen G, Henderson T, Wilson D, Liu SF (2006) Activation of nuclear factor kappaB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath 10:43–50. https://doi.org/10.1007/s11325-005-0046-6

    Article  PubMed  Google Scholar 

  49. Yamauchi M, Tamaki S, Tomoda K, Yoshikawa M, Fukuoka A, Makinodan K, Koyama N, Suzuki T, Kimura H (2006) Evidence for activation of nuclear factor kappaB in obstructive sleep apnea. Sleep Breath 10:189–193. https://doi.org/10.1007/s11325-006-0074-x

    Article  PubMed  Google Scholar 

  50. Larkin EK, Rosen CL, Kirchner HL, Storfer-Isser A, Emancipator JL, Johnson NL, Zambito AM, Tracy RP, Jenny NS, Redline S (2005) Variation of C-reactive protein levels in adolescents: association with sleep-disordered breathing and sleep duration. Circulation 111:1978–1984. https://doi.org/10.1161/01.CIR.0000161819.76138.5E

    Article  CAS  PubMed  Google Scholar 

  51. Tauman R, Ivanenko A, O'Brien LM, Gozal D (2004) Plasma C-reactive protein levels among children with sleep-disordered breathing. Pediatrics 113:e564–e569. https://doi.org/10.1542/peds.113.6.e564

    Article  PubMed  Google Scholar 

  52. De Felice M, Germelli L, Piccarducci R, Da Pozzo E, Giacomelli C, Baccaglini-Frank A, Martini C (2023) Intermittent hypoxia treatments cause cellular priming in human microglia. J Cell Mol Med 27:819–830. https://doi.org/10.1111/jcmm.17682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prieto GA, Tong L, Smith ED, Cotman CW (2019) TNFalpha and IL-1beta but not IL-18 suppresses hippocampal long-term potentiation directly at the synapse. Neurochem Res 44:49–60. https://doi.org/10.1007/s11064-018-2517-8

    Article  CAS  PubMed  Google Scholar 

  54. Mohammadi M, Manaheji H, Maghsoudi N, Danyali S, Baniasadi M, Zaringhalam J (2020) Microglia dependent BDNF and proBDNF can impair spatial memory performance during persistent inflammatory pain. Behav Brain Res 390:112683. https://doi.org/10.1016/j.bbr.2020.112683

    Article  CAS  PubMed  Google Scholar 

  55. Pajarillo E, Kim S, Digman A, Dutton M, Son DS, Aschner M, Lee E (2023) The role of microglial LRRK2 kinase in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. J Biol Chem 299:104879. https://doi.org/10.1016/j.jbc.2023.104879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu X, Gong L, Xie L, Gu W, Wang X, Liu Z, Li S (2021) NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-Parkin pathway of mitophagy in a murine model of sleep apnea. Front Immunol 12:628168. https://doi.org/10.3389/fimmu.2021.628168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Miao Y, Xiong X, Tan J, Han Z, Chen F, Lei P, Zhang Q (2023) Microglial exosomes alleviate intermittent hypoxia-induced cognitive deficits by suppressing NLRP3 inflammasome. Biol Direct 18:29. https://doi.org/10.1186/s13062-023-00387-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kowalski K, Mulak A (2019) Brain-gut-microbiota axis in Alzheimer's disease. J Neurogastroenterol Motil 25:48–60. https://doi.org/10.5056/jnm18087

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hu C, Wang P, Yang Y, Li J, Jiao X, Yu H, Wei Y, Li J, Qin Y (2021) Chronic intermittent hypoxia participates in the pathogenesis of atherosclerosis and perturbs the formation of intestinal microbiota. Front Cell Infect Microbiol 11:560201. https://doi.org/10.3389/fcimb.2021.560201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, Almendros I, Gileles-Hillel A, Qiao Z, Hubert N, Farre R, Chang EB, Gozal D (2016) Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep 6:35405. https://doi.org/10.1038/srep35405

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J, Tai A, Yang Y (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37:8706–8717. https://doi.org/10.1523/JNEUROSCI.3956-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li H, Zhang C, Zhou Y, Deng Y, Zheng X, Xue X (2023) Neurovascular protection of alisol A on cerebral ischemia mice through activating the AKT/GSK3beta pathway. Aging (Albany NY) 15:11639–11653. https://doi.org/10.18632/aging.205151

    Article  PubMed  Google Scholar 

  63. Hagemann TL, Coyne S, Levin A, Wang L, Feany MB, Messing A (2023) STAT3 drives GFAP accumulation and astrocyte pathology in a mouse model of alexander disease. Cells 12. https://doi.org/10.3390/cells12070978

  64. Celikkaya H, Cosacak MI, Papadimitriou C, Popova S, Bhattarai P, Biswas SN, Siddiqui T, Wistorf S, Nevado-Alcalde I, Naumann L, Mashkaryan V, Brandt K, Freudenberg U, Werner C, Kizil C (2019) GATA3 promotes the neural progenitor state but not neurogenesis in 3D traumatic injury model of primary human cortical astrocytes. Front Cell Neurosci 13:23. https://doi.org/10.3389/fncel.2019.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamby ME, Coppola G, Ao Y, Geschwind DH, Khakh BS, Sofroniew MV (2012) Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci 32:14489–14510. https://doi.org/10.1523/JNEUROSCI.1256-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. da Silva LG, Mottin CC, Souza DO, Portela LV, Braga CW, Vargas CB, Padoin AV, Martinez D, Dias RD (2008) Serum S100B but not NSE levels are increased in morbidly obese individuals affected by obstructive sleep apnea-hypopnea syndrome. Obes Surg 18:993–999. https://doi.org/10.1007/s11695-007-9386-6

    Article  PubMed  Google Scholar 

  67. Wang B, Li W, Jin H, Nie X, Shen H, Li E, Wang W (2018) Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol 255:50–57. https://doi.org/10.1016/j.resp.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  68. Xu J, Li Q, Xu CY, Mao S, Jin JJ, Gu W, Shi Y, Zou CF, Ye L (2022) Obstructive sleep apnea aggravates neuroinflammation and pyroptosis in early brain injury following subarachnoid hemorrhage via ASC/HIF-1alpha pathway. Neural Regen Res 17:2537–2543. https://doi.org/10.4103/1673-5374.339000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang X, Yang L, Yang L, Xing F, Yang H, Qin L, Lan Y, Wu H, Zhang B, Shi H, Lu C, Huang F, Wu X, Wang Z (2017) Gypenoside IX suppresses p38 MAPK/Akt/NFkappaB signaling pathway activation and inflammatory responses in astrocytes stimulated by proinflammatory mediators. Inflammation 40:2137–2150. https://doi.org/10.1007/s10753-017-0654-x

    Article  CAS  PubMed  Google Scholar 

  70. Zheng Y, Ding W, Zhang T, Zhao Z, Wang R, Li Z, Yu S, Li J, Zhao X, Wu Q (2021) Antimony-induced astrocyte activation via mitogen-activated protein kinase activation-dependent CREB phosphorylation. Toxicol Lett 352:9–16. https://doi.org/10.1016/j.toxlet.2021.09.006

    Article  CAS  PubMed  Google Scholar 

  71. Banitalebi S, Skauli N, Geiseler S, Ottersen OP, Amiry-Moghaddam M (2022) Disassembly and mislocalization of AQP4 in incipient scar formation after experimental stroke. Int J Mol Sci 23. https://doi.org/10.3390/ijms23031117

  72. Sun C, Lin L, Yin L, Hao X, Tian J, Zhang X, Ren Y, Li C, Yang Y (2022) Acutely inhibiting AQP4 with TGN-020 improves functional outcome by attenuating edema and peri-infarct astrogliosis after cerebral ischemia. Front Immunol 13:870029. https://doi.org/10.3389/fimmu.2022.870029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nito C, Kamada H, Endo H, Narasimhan P, Lee YS, Chan PH (2012) Involvement of mitogen-activated protein kinase pathways in expression of the water channel protein aquaporin-4 after ischemia in rat cortical astrocytes. J Neurotrauma 29:2404–2412. https://doi.org/10.1089/neu.2012.2430

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lu Y, Chang P, Ding W, Bian J, Wang D, Wang X, Luo Q, Wu X, Zhu L (2022) Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: Involvement of inhibition of the NF-kappaB signaling pathway in glial cells. Eur J Pharmacol 929:175137. https://doi.org/10.1016/j.ejphar.2022.175137

    Article  CAS  PubMed  Google Scholar 

  75. Zhou M, Li D, Shen Q, Gao L, Zhuang P, Zhang Y, Guo H (2022) Storax inhibits caveolae-mediated transcytosis at blood-brain barrier after ischemic stroke in rats. Front Pharmacol 13:876235. https://doi.org/10.3389/fphar.2022.876235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baronio D, Martinez D, Fiori CZ, Bambini-Junior V, Forgiarini LF, Pase da Rosa D, Kim LJ, Cerski MR (2013) Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea. Respir Physiol Neurobiol 185:217–221. https://doi.org/10.1016/j.resp.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  77. Owen JE, BenediktsdOttir B, Gislason T, Robinson SR (2019) Neuropathological investigation of cell layer thickness and myelination in the hippocampus of people with obstructive sleep apnea. Sleep 42. https://doi.org/10.1093/sleep/zsy199

  78. Ueno-Pardi LM, Souza-Duran FL, Matheus L, Rodrigues AG, Barbosa ERF, Cunha PJ, Carneiro CG, Costa NA, Ono CR, Buchpiguel CA, Negrao CE, Lorenzi-Filho G, Busatto-Filho G (2022) Effects of exercise training on brain metabolism and cognitive functioning in sleep apnea. Sci Rep 12:9453. https://doi.org/10.1038/s41598-022-13115-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ju G, Yoon IY, Lee SD, Kim YK, Yoon E, Kim JW (2012) Modest changes in cerebral glucose metabolism in patients with sleep apnea syndrome after continuous positive airway pressure treatment. Respiration 84:212–218. https://doi.org/10.1159/000338117

    Article  CAS  PubMed  Google Scholar 

  80. Xylaki M, Paiva I, Al-Azzani M, Gerhardt E, Jain G, Islam MR, Vasili E, Wassouf Z, Schulze-Hentrich JM, Fischer A, Outeiro TF (2023) miR-101a-3p impairs synaptic plasticity and contributes to synucleinopathy. J Parkinsons Dis. https://doi.org/10.3233/JPD-225055

  81. Bian Z, Yu H, Hu X, Bian Y, Sun H, Tadokoro K, Takemoto M, Yunoki T, Nakano Y, Fukui Y, Morihara R, Abe K, Yamashita T (2022) Tocovid attenuated oxidative stress and cognitive decline by inhibiting amyloid-beta-induced NOX2 activation in Alzheimer's disease mice. J Alzheimers Dis. https://doi.org/10.3233/JAD-220761

  82. Kalinichenko AL, Jappy D, Solius GM, Maltsev DI, Bogdanova YA, Mukhametshina LF, Sokolov RA, Moshchenko AA, Shaydurov VA, Rozov AV, Podgorny OV, Belousov VV (2023) Chemogenetic emulation of intraneuronal oxidative stress affects synaptic plasticity. Redox Biol 60:102604. https://doi.org/10.1016/j.redox.2023.102604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arias-Cavieres A, Khuu MA, Nwakudu CU, Barnard JE, Dalgin G, Garcia AJ 3rd (2020) A HIF1a-dependent pro-oxidant state disrupts synaptic plasticity and impairs spatial memory in response to intermittent hypoxia. eNeuro 7. https://doi.org/10.1523/ENEURO.0024-20.2020

  84. Diebold I, Petry A, Hess J, Gorlach A (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21:2087–2096. https://doi.org/10.1091/mbc.e09-12-1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang Q, Wang P, Liu H, Li M, Yue Y, Xu P (2022) Inhibition of ERK1/2 regulates cognitive function by decreasing expression levels of PSD-95 in the hippocampus of CIH rats. Eur J Neurosci 55:1471–1482. https://doi.org/10.1111/ejn.15635

    Article  CAS  PubMed  Google Scholar 

  86. Wang X, Wang Z, Cao J, Dong Y, Chen Y (2023) Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. Microbiome 11:17. https://doi.org/10.1186/s40168-022-01452-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P (2023) Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/beta-catenin and inhibiting NF-kappaB signaling. Behav Brain Res 442:114301. https://doi.org/10.1016/j.bbr.2023.114301

    Article  CAS  PubMed  Google Scholar 

  88. Dandan Z, Shen C, Liu X, Liu T, Ou Y, Ouyang R (2023) IL-33/ST2 mediating systemic inflammation and neuroinflammation through NF-kB participated in the neurocognitive impairment in obstructive sleep apnea. Int Immunopharmacol 115:109604. https://doi.org/10.1016/j.intimp.2022.109604

    Article  CAS  Google Scholar 

  89. Yang CZ, Wang SH, Zhang RH, Lin JH, Tian YH, Yang YQ, Liu J, Ma YX (2023) Neuroprotective effect of astragalin via activating PI3K/Akt-mTOR-mediated autophagy on APP/PS1 mice. Cell Death Dis 9:15. https://doi.org/10.1038/s41420-023-01324-1

    Article  CAS  Google Scholar 

  90. Guo X, Liu Y, Zhao Y, Fan R, Bai Y, Guo X, Li J, Chen C (2019) Role of the PI3K-mTOR autophagy pathway in nerve damage in rats with intermittent hypoxia-aggravated whole brain ischemia. Mol Med Rep 20:1411–1417. https://doi.org/10.3892/mmr.2019.10337

    Article  CAS  PubMed  Google Scholar 

  91. Xu T, Liu J, Li XR, Yu Y, Luo X, Zheng X, Cheng Y, Yu PQ, Liu Y (2021) The mTOR/NF-kappaB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 58:3848–3862. https://doi.org/10.1007/s12035-021-02390-1

    Article  CAS  PubMed  Google Scholar 

  92. Dhingra R, Gang H, Wang Y, Biala AK, Aviv Y, Margulets V, Tee A, Kirshenbaum LA (2013) Bidirectional regulation of nuclear factor-kappaB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circ Heart Fail 6:335–343. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000061

    Article  CAS  PubMed  Google Scholar 

  93. Zhang CQ, Yi S, Chen BB, Cui PP, Wang Y, Li YZ (2021) mTOR/NF-kappaB signaling pathway protects hippocampal neurons from injury induced by intermittent hypoxia in rats. Int J Neurosci 131:994–1003. https://doi.org/10.1080/00207454.2020.1766460

    Article  CAS  PubMed  Google Scholar 

  94. Fang YY, Luo M, Yue S, Han Y, Zhang HJ, Zhou YH, Liu K, Liu HG (2022) 7,8-Dihydroxyflavone protects retinal ganglion cells against chronic intermittent hypoxia-induced oxidative stress damage via activation of the BDNF/TrkB signaling pathway. Sleep Breath 26:287–295. https://doi.org/10.1007/s11325-021-02400-5

    Article  PubMed  Google Scholar 

  95. Faustini G, Longhena F, Musco A, Bono F, Parrella E, La Via L, Barbon A, Pizzi M, Onofri F, Benfenati F, Missale C, Memo M, Zizioli D, Bellucci A (2022) Synapsin III regulates dopaminergic neuron development in vertebrates. Cells 11. https://doi.org/10.3390/cells11233902

  96. Liu WY, Li Y, Li Y, Xu LZ, Jia JP (2023) Carnosic acid attenuates AbetaOs-induced apoptosis and synaptic impairment via regulating NMDAR2B and its downstream cascades in SH-SY5Y cells. Mol Neurobiol 60:133–144. https://doi.org/10.1007/s12035-022-03032-w

    Article  CAS  PubMed  Google Scholar 

  97. Ishola IO, Jacinta AA, Adeyemi OO (2019) Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab Brain Dis 34:979–989. https://doi.org/10.1007/s11011-019-00409-0

    Article  CAS  PubMed  Google Scholar 

  98. Liu Y, Li H, Wang J, Xue Q, Yang X, Kang Y, Li M, Xu J, Li G, Li C, Chang HC, Su KP, Wang F (2020) Association of cigarette smoking with cerebrospinal fluid biomarkers of neurodegeneration, neuroinflammation, and oxidation. JAMA Netw Open 3:e2018777. https://doi.org/10.1001/jamanetworkopen.2020.18777

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wilkerson JE, Mitchell GS (2009) Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol 217:116–123. https://doi.org/10.1016/j.expneurol.2009.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X, Bean JC, Chen LH, Qin XH, Liu JH, Bai XC, Mei L, Gao TM (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30:12653–12663. https://doi.org/10.1523/JNEUROSCI.6414-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lucke-Wold BP, Smith KE, Nguyen L, Turner RC, Logsdon AF, Jackson GJ, Huber JD, Rosen CL, Miller DB (2015) Sleep disruption and the sequelae associated with traumatic brain injury. Neurosci Biobehav Rev 55:68–77. https://doi.org/10.1016/j.neubiorev.2015.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ni P, Dong H, Zhou Q, Wang Y, Sun M, Qian Y, Sun J (2019) Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice. Mediat Inflamm 2019:8301725. https://doi.org/10.1155/2019/8301725

    Article  CAS  Google Scholar 

  103. Chanana P, Kumar A (2016) GABA-BZD Receptor modulating mechanism of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci 10:84. https://doi.org/10.3389/fnins.2016.00084

    Article  PubMed  PubMed Central  Google Scholar 

  104. Goldberg J, Currais A, Prior M, Fischer W, Chiruta C, Ratliff E, Daugherty D, Dargusch R, Finley K, Esparza-Molto PB, Cuezva JM, Maher P, Petrascheck M, Schubert D (2018) The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell 17. https://doi.org/10.1111/acel.12715

  105. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666. https://doi.org/10.1016/j.molcel.2016.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Raven F, Van der Zee EA, Meerlo P, Havekes R (2018) The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev 39:3–11. https://doi.org/10.1016/j.smrv.2017.05.002

    Article  PubMed  Google Scholar 

  107. Chen DW, Wang J, Zhang LL, Wang YJ, Gao CY (2018) Cerebrospinal fluid amyloid-beta levels are increased in patients with insomnia. J Alzheimers Dis 61:645–651. https://doi.org/10.3233/JAD-170032

    Article  CAS  PubMed  Google Scholar 

  108. Shieu MM, Dunietz GL, Paulson HL, Chervin RD, Braley TJ (2022) The association between obstructive sleep apnea risk and cognitive disorders: a population-based study. J Clin Sleep Med 18:1177–1185. https://doi.org/10.5664/jcsm.9832

    Article  PubMed  PubMed Central  Google Scholar 

  109. Diaz-Roman M, Pulopulos MM, Baquero M, Salvador A, Cuevas A, Ferrer I, Ciopat O, Gomez E (2021) Obstructive sleep apnea and Alzheimer's disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep 44. https://doi.org/10.1093/sleep/zsaa133

  110. Fernandes M, Mari L, Chiaravalloti A, Paoli B, Nuccetelli M, Izzi F, Giambrone MP, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Placidi F, Liguori C (2022) (18)F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J Neurol 269:5356–5367. https://doi.org/10.1007/s00415-022-11182-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun H, Gao Y, Li M, Zhang S, Shen T, Yuan X, Shang X, Li Z, Zhang J (2022) Altered amyloid-beta and tau proteins in neural-derived plasma exosomes in obstructive sleep apnea. Sleep Med 94:76–83. https://doi.org/10.1016/j.sleep.2022.03.021

    Article  PubMed  Google Scholar 

  112. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oyama J, Yamamoto H, Maeda T, Ito A, Node K, Makino N (2012) Continuous positive airway pressure therapy improves vascular dysfunction and decreases oxidative stress in patients with the metabolic syndrome and obstructive sleep apnea syndrome. Clin Cardiol 35:231–236. https://doi.org/10.1002/clc.21010

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lu D, Li N, Yao X, Zhou L (2017) Potential inflammatory markers in obstructive sleep apnea-hypopnea syndrome. Bosn J Basic Med Sci 17:47–53. https://doi.org/10.17305/bjbms.2016.1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alonso-Fernandez A, Garcia-Rio F, Arias MA, Hernanz A, de la Pena M, Pierola J, Barcelo A, Lopez-Collazo E, Agusti A (2009) Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax 64:581–586. https://doi.org/10.1136/thx.2008.100537

    Article  CAS  PubMed  Google Scholar 

  116. Murri M, Garcia-Delgado R, Alcazar-Ramirez J, Fernandez de Rota L, Fernandez-Ramos A, Cardona F, Tinahones FJ (2011) Continuous positive airway pressure therapy reduces oxidative stress markers and blood pressure in sleep apnea-hypopnea syndrome patients. Biol Trace Elem Res 143:1289–1301. https://doi.org/10.1007/s12011-011-8969-1

    Article  CAS  PubMed  Google Scholar 

  117. Yagihara F, Lucchesi LM, D'Almeida V, Mello MT, Tufik S, Bittencourt LR (2012) Oxidative stress and quality of life in elderly patients with obstructive sleep apnea syndrome: are there differences after six months of Continuous Positive Airway Pressure treatment? Clinics (Sao Paulo) 67:565–572. https://doi.org/10.6061/clinics/2012(06)04

    Article  PubMed  Google Scholar 

  118. Chen F, Wu X, Yang J, Yu X, Liu B, Yan Z (2022) Hippocampal Galectin-3 knockdown alleviates lipopolysaccharide-induced neurotoxicity and cognitive deficits by inhibiting TLR4/NF-small ka, CyrillicB signaling in aged mice. Eur J Pharmacol 936:175360. https://doi.org/10.1016/j.ejphar.2022.175360

    Article  CAS  PubMed  Google Scholar 

  119. Zong D, Liu X, Shen C, Liu T, Ouyang R (2023) Involvement of Galectin-3 in neurocognitive impairment in obstructive sleep apnea via regulating inflammation and oxidative stress through NLRP3. Sleep Med 101:1–10. https://doi.org/10.1016/j.sleep.2022.09.018

    Article  PubMed  Google Scholar 

  120. Xue S, Shen T, Li M, Leng B, Yao R, Gao Y, Sun H, Li Z, Zhang J (2023) Neuronal glutamate transporters are associated with cognitive impairment in obstructive sleep apnea patients without dementia. Neurosci Lett 802:137168. https://doi.org/10.1016/j.neulet.2023.137168

    Article  CAS  PubMed  Google Scholar 

  121. Kaur B, Sharma PK, Chatterjee B, Bissa B, Nattarayan V, Ramasamy S, Bhat A, Lal M, Samaddar S, Banerjee S, Roy SS (2023) Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun Signal 21:258. https://doi.org/10.1186/s12964-023-01288-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu Y, Gou M, Guo X (2023) Features of plasma homocysteine, vitamin B12, and folate in Parkinson's disease: an updated meta-analysis. J Integr Neurosci 22:115. https://doi.org/10.31083/j.jin2205115

    Article  PubMed  Google Scholar 

  123. Postnikova TY, Amakhin DV, Trofimova AM, Tumanova NL, Dubrovskaya NM, Kalinina DS, Kovalenko AA, Shcherbitskaia AD, Vasilev DS, Zaitsev AV (2022) Maternal hyperhomocysteinemia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Cells 12. https://doi.org/10.3390/cells12010058

  124. Li N, Cai X, Zhu Q, Yao X, Lin M, Gan L, Sun L, Yue N, Ren Y, Hong J, Ma Y, Wang R, Yili J, Luo Q (2021) Association between plasma homocysteine concentrations and the first ischemic stroke in hypertensive patients with obstructive sleep apnea: a 7-year retrospective cohort study from China. Dis Markers 2021:9953858. https://doi.org/10.1155/2021/9953858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jordan W, Berger C, Cohrs S, Rodenbeck A, Mayer G, Niedmann PD, von Ahsen N, Ruther E, Kornhuber J, Bleich S (2004) CPAP-therapy effectively lowers serum homocysteine in obstructive sleep apnea syndrome. J Neural Transm (Vienna) 111:683–689. https://doi.org/10.1007/s00702-004-0130-2

    Article  CAS  PubMed  Google Scholar 

  126. Steffanina A, Proietti L, Antonaglia C, Palange P, Angelici E, Canipari R (2015) The plasminogen system and transforming growth factor-beta in subjects with obstructive sleep apnea syndrome: effects of CPAP treatment. Respir Care 60:1643–1651. https://doi.org/10.4187/respcare.03571

    Article  PubMed  Google Scholar 

  127. Coimbra-Costa D, Garzon F, Alva N, Pinto TCC, Aguado F, Torrella JR, Carbonell T, Rama R (2021) Intermittent hypobaric hypoxic preconditioning provides neuroprotection by increasing antioxidant activity, erythropoietin expression and preventing apoptosis and astrogliosis in the brain of adult rats exposed to acute severe hypoxia. Int J Mol Sci 22. https://doi.org/10.3390/ijms22105272

  128. Yue X, Zhou Y, Qiao M, Zhao X, Huang X, Zhao T, Cheng X, Fan M, Zhao Y, Chen R, Zhu L (2021) Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain. Alzheimers Res Ther 13:194. https://doi.org/10.1186/s13195-021-00935-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li G, Liu J, Guan Y, Ji X (2021) The role of hypoxia in stem cell regulation of the central nervous system: from embryonic development to adult proliferation. CNS Neurosci Ther 27:1446–1457. https://doi.org/10.1111/cns.13754

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kim TA, Syty MD, Wu K, Ge S (2022) Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 43:481–496. https://doi.org/10.24272/j.issn.2095-8137.2021.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schaberg E, Gotz M, Faissner A (2022) The extracellular matrix molecule tenascin-C modulates cell cycle progression and motility of adult neural stem/progenitor cells from the subependymal zone. Cell Mol Life Sci 79:244. https://doi.org/10.1007/s00018-022-04259-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Martoncikova M, Alexovic Matiasova A, Sevc J, Racekova E (2021) Relationship between blood vessels and migration of neuroblasts in the olfactory neurogenic region of the rodent brain. Int J Mol Sci 22. https://doi.org/10.3390/ijms222111506

  133. Khuu MA, Nallamothu T, Castro-Rivera CI, Arias-Cavieres A, Szujewski CC, Garcia Iii AJ (2021) Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis. Sci Rep 11:6005. https://doi.org/10.1038/s41598-021-85357-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mitroshina EV, Savyuk MO, Ponimaskin E, Vedunova MV (2021) Hypoxia-inducible factor (hif) in ischemic stroke and neurodegenerative disease. Front Cell Dev Biol 9:703084. https://doi.org/10.3389/fcell.2021.703084

    Article  PubMed  PubMed Central  Google Scholar 

  135. Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Khaliulin I, Prasad NR, Singh N, Degterev A, Tomilova EA, Sapozhenkova EV (2022) The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 27:697–719. https://doi.org/10.1007/s10495-022-01760-x

    Article  CAS  PubMed  Google Scholar 

  136. Ryou MG, Mallet RT, Metzger DB, Jung ME (2017) Intermittent hypoxia training blunts cerebrocortical presenilin 1 overexpression and amyloid-beta accumulation in ethanol-withdrawn rats. Am J Phys Regul Integr Comp Phys 313:R10–R18. https://doi.org/10.1152/ajpregu.00050.2017

    Article  Google Scholar 

  137. Kheirandish-Gozal L, Philby MF, Alonso-Alvarez ML, Teran-Santos J, Gozal D (2016) Biomarkers of Alzheimer disease in children with obstructive sleep apnea: effect of adenotonsillectomy. Sleep 39:1225–1232. https://doi.org/10.5665/sleep.5838

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kumar VB, Franko M, Banks WA, Kasinadhuni P, Farr SA, Vyas K, Choudhuri V, Morley JE (2009) Increase in presenilin 1 (PS1) levels in senescence-accelerated mice (SAMP8) may indirectly impair memory by affecting amyloid precursor protein (APP) processing. J Exp Biol 212:494–498. https://doi.org/10.1242/jeb.022780

    Article  CAS  PubMed  Google Scholar 

  139. Zhang HP, Sun YY, Chen XM, Yuan LB, Su BX, Ma R, Zhao RN, Dong HL, Xiong L (2014) The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: the role of the Notch signaling pathway. NeuroMolecular Med 16:191–204. https://doi.org/10.1007/s12017-013-8273-7

    Article  CAS  PubMed  Google Scholar 

  140. Zhang K, Zhao T, Huang X, Wu LY, Wu K, Zhu LL, Fan M (2014) Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia. Neurobiol Dis 64:66–78. https://doi.org/10.1016/j.nbd.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  141. Wu J, Stefaniak J, Hafner C, Schramel JP, Kaun C, Wojta J, Ullrich R, Tretter VE, Markstaller K, Klein KU (2016) Intermittent hypoxia causes inflammation and injury to human adult cardiac myocytes. Anesth Analg 122:373–380. https://doi.org/10.1213/ANE.0000000000001048

    Article  CAS  PubMed  Google Scholar 

  142. Prasad V, Lorenz JN, Miller ML, Vairamani K, Nieman ML, Wang Y, Shull GE (2013) Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress. J Mol Cell Cardiol 65:33–42. https://doi.org/10.1016/j.yjmcc.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  143. Sakurai T, Kudo M, Umemura A, He G, Elsharkawy AM, Seki E, Karin M (2013) p38alpha inhibits liver fibrogenesis and consequent hepatocarcinogenesis by curtailing accumulation of reactive oxygen species. Cancer Res 73:215–224. https://doi.org/10.1158/0008-5472.CAN-12-1602

    Article  CAS  PubMed  Google Scholar 

  144. Pasha A, Calvani M, Favre C (2021) beta3-Adrenoreceptors as ROS balancer in hematopoietic stem cell transplantation. Int J Mol Sci 22. https://doi.org/10.3390/ijms22062835

  145. Feng YY, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, Liu J, Grasberger H, Ohkita M, Matsumura Y, Wang JY, Tsubata T (2019) Essential role of NADPH oxidase-dependent production of reactive oxygen species in maintenance of sustained B cell receptor signaling and B cell proliferation. J Immunol 202:2546–2557. https://doi.org/10.4049/jimmunol.1800443

    Article  CAS  PubMed  Google Scholar 

  146. Yoneyama M, Kawada K, Gotoh Y, Shiba T, Ogita K (2010) Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int 56:740–746. https://doi.org/10.1016/j.neuint.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  147. Madhavan L, Ourednik V, Ourednik J (2006) Increased “vigilance” of antioxidant mechanisms in neural stem cells potentiates their capability to resist oxidative stress. Stem Cells 24:2110–2119. https://doi.org/10.1634/stemcells.2006-0018

    Article  CAS  PubMed  Google Scholar 

  148. Madhavan L, Ourednik V, Ourednik J (2008) Neural stem/progenitor cells initiate the formation of cellular networks that provide neuroprotection by growth factor-modulated antioxidant expression. Stem Cells 26:254–265. https://doi.org/10.1634/stemcells.2007-0221

    Article  CAS  PubMed  Google Scholar 

  149. Li X, Wu Z, Zhang Y, Xu Y, Han G, Zhao P (2017) Activation of autophagy contributes to sevoflurane-induced neurotoxicity in fetal rats. Front Mol Neurosci 10:432. https://doi.org/10.3389/fnmol.2017.00432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and design of this review. Searching literature and proposing viewpoints were performed by N.D., X.W., and H.-m.Y. The first draft of the manuscript was written by Y.H., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong-mei Yue.

Ethics declarations

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Since this study did not involve the usage of humans, therefore, there was no need for informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Dong, N., Wang, X. et al. Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons. Sleep Breath (2024). https://doi.org/10.1007/s11325-024-03001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11325-024-03001-8

Keywords

Navigation