Skip to main content

Advertisement

Log in

The Neuroprotective Effects of Isoflurane Preconditioning in a Murine Transient Global Cerebral Ischemia–Reperfusion Model: The Role of the Notch Signaling Pathway

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Inhalational anesthetic preconditioning can induce neuroprotective effects, and the notch signaling pathway plays an important role in neural progenitor cell differentiation and the inflammatory response after central nervous system injury. This study evaluated whether the neuroprotective effect of isoflurane preconditioning is mediated by the activation of the notch signaling pathway. Mice were divided into two groups consisting of those that did or did not receive preconditioning with isoflurane. The expression levels of notch-1, notch intracellular domain (NICD), and hairy and enhancer of split (HES-1) were measured in mice subjected to transient global cerebral ischemia–reperfusion injury. The notch signaling inhibitor DAPT and conditional notch-RBP-J knockout mice were used to investigate the mechanisms of isoflurane preconditioning-induced neuroprotection. Immunohistochemical staining, real-time polymerase chain reaction assays, and Western blotting were performed. Isoflurane preconditioning induced neuroprotection against global cerebral ischemia. Preconditioning up-regulated the expression of notch-1, HES-1, and NICD after ischemic–reperfusion. However, these molecules were down-regulated at 72 h after ischemic–reperfusion. The inhibition of notch signaling activity by DAPT significantly attenuated the isoflurane preconditioning-induced neuroprotection, and similar results were obtained using notch knockout mice. Our results demonstrate that the neuroprotective effects of isoflurane preconditioning are mediated by the pre-activation of the notch signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., et al. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442(7104), 823–826.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: Cell fate control and signal integration in development. [Research support, non-U.S. gov’t research support, U.S. gov’t, P.H.S. review]. Science, 284(5415), 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Arumugam, T. V., Chan, S. L., Jo, D. G., Yilmaz, G., Tang, S. C., Cheng, A., et al. (2006). Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. [Research support, N.I.H., intramural]. Nature Medicine, 12(6), 621–623.

    Article  CAS  PubMed  Google Scholar 

  • Bein, B. (2011). Clinical application of the cardioprotective effects of volatile anaesthetics: PRO–get an extra benefit from a proven anaesthetic free of charge. [Research support, non-U.S. gov’t review]. European Journal of Anaesthesiology, 28(9), 620–622.

    Article  CAS  PubMed  Google Scholar 

  • Bekker, A., Shah, R., Quartermain, D., Li, Y. S., & Blanck, T. (2006). Isoflurane preserves spatial working memory in adult mice after moderate hypoxia. Anesthesia and Analgesia, 102(4), 1134–1138.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Zacharek, A., Li, A., Cui, X., Roberts, C., Lu, M., et al. (2008). Atorvastatin promotes presenilin-1 expression and Notch1 activity and increases neural progenitor cell proliferation after stroke. Stroke, 39(1), 220–226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dovey, H. F., John, V., Anderson, J. P., Chen, L. Z., de Saint Andrieu, P., Fang, L. Y., et al. (2001). Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. Journal of Neurochemistry, 76(1), 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, M., Hara, H., Meng, W., Vonsattel, J. P., Huang, Z., & Moskowitz, M. A. (1997). Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57black/6 mice. Stroke, 28(9), 1805–1810. (discussion 1811).

    Article  CAS  PubMed  Google Scholar 

  • Gaiano, N., & Fishell, G. (2002). The role of notch in promoting glial and neural stem cell fates. Annual Review of Neuroscience, 25, 471–490.

    Article  CAS  PubMed  Google Scholar 

  • Homi, H. M., Mixco, J. M., Sheng, H., Grocott, H. P., Pearlstein, R. D., & Warner, D. S. (2003). Severe hypotension is not essential for isoflurane neuroprotection against forebrain ischemia in mice. Anesthesiology, 99(5), 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa, K., Matsumoto, M., Tsujimoto, Y., Ohtsuki, T., Kuwabara, K., Matsushita, K., et al. (1998a). Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke, 29(12), 2616–2621.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa, K., Matsumoto, M., Yang, G., Mabuchi, T., Yagita, Y., Hori, M., et al. (1998b). Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: Evaluation of the patency of the posterior communicating artery. Journal of Cerebral Blood Flow and Metabolism, 18(5), 570–579.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, H., Kirsch, J. R., Hurn, P. D., & Murphy, S. J. (2007). Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. [Research support, N.I.H., extramural research support, non-U.S. gov’t review]. Journal of Cerebral Blood Flow and Metabolism, 27(6), 1108–1128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lanz, T. A., Himes, C. S., Pallante, G., Adams, L., Yamazaki, S., Amore, B., et al. (2003). The gamma-secretase inhibitor N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces: A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. Journal of Pharmacology and Experimental Therapeutics, 305(3), 864–871.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Matchett, G. A., Allard, M. W., Martin, R. D., & Zhang, J. H. (2009). Neuroprotective effect of volatile anesthetic agents: Molecular mechanisms. Neurological Research, 31(2), 128–134.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, M., Sugimori, M., & Nakafuku, M. (2007). Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. [Research support, non-U.S. gov’t]. Molecular and Cellular Biology, 27(11), 3982–3994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., et al. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 110(4), 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Ohtaki, H., Ylostalo, J. H., Foraker, J. E., Robinson, A. P., Reger, R. L., Shioda, S., et al. (2008). Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proceedings of the National Academy of Science USA, 105(38), 14638–14643.

    Article  CAS  Google Scholar 

  • Oya, S., Yoshikawa, G., Takai, K., Tanaka, J. I., Higashiyama, S., Saito, N., et al. (2009). Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury. [Research support, non-U.S. gov’t]. Neuroscience, 158(2), 683–692.

    Article  CAS  PubMed  Google Scholar 

  • Presente, A., Andres, A., & Nye, J. S. (2001). Requirement of Notch in adulthood for neurological function and longevity. NeuroReport, 12(15), 3321–3325.

    Article  CAS  PubMed  Google Scholar 

  • Redel, A., Stumpner, J., Tischer-Zeitz, T., Lange, M., Smul, T. M., Lotz, C., et al. (2009). Comparison of isoflurane-, sevoflurane-, and desflurane-induced pre- and postconditioning against myocardial infarction in mice in vivo. Experimental Biology and Medicine (Maywood), 234(10), 1186–1191.

    Article  CAS  Google Scholar 

  • Sang, H., Cao, L., Qiu, P., Xiong, L., Wang, R., & Yan, G. (2006). Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology, 105(5), 953–960.

    Article  CAS  PubMed  Google Scholar 

  • Schifilliti, D., Grasso, G., Conti, A., & Fodale, V. (2010). Anaesthetic-related neuroprotection: Intravenous or inhalational agents? [Research support, non-U.S. gov’t review]. CNS Drugs, 24(11), 893–907.

    CAS  PubMed  Google Scholar 

  • Sheng, H., Laskowitz, D. T., Mackensen, G. B., Kudo, M., Pearlstein, R. D., & Warner, D. S. (1999). Apolipoprotein E deficiency worsens outcome from global cerebral ischemia in the mouse. Stroke, 30(5), 1118–1124.

    Article  CAS  PubMed  Google Scholar 

  • Wacker, B. K., Park, T. S., & Gidday, J. M. (2009). Hypoxic preconditioning-induced cerebral ischemic tolerance: Role of microvascular sphingosine kinase 2. Stroke, 40(10), 3342–3348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, L., Chopp, M., Zhang, R. L., Zhang, L., Letourneau, Y., Feng, Y. F., et al. (2009). The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience, 158(4), 1356–1363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, L., Traystman, R. J., & Murphy, S. J. (2008). Inhalational anesthetics as preconditioning agents in ischemic brain. Current Opinion in Pharmacology, 8(1), 104–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei, Z., Chigurupati, S., Arumugam, T. V., Jo, D. G., Li, H., & Chan, S. L. (2011). Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. [Research support, non-U.S. gov’t]. Stroke, 42(9), 2589–2594.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, L., Zheng, Y., Wu, M., Hou, L., Zhu, Z., Zhang, X., et al. (2003). Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesthesia and Analgesia, 96(1), 233–237.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Duan, W., Jin, Z., Bi, S., Yan, J., Jin, Y., et al. (2011). New role of Notch-mediated signaling pathway in myocardial ischemic preconditioning. [Research support, non-U.S. gov’t]. Medical Hypotheses, 76(3), 427–428.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Q., Yan, W., Li, X., Hou, L., Dong, H., Wang, Q., et al. (2012). Activation of canonical Notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology. doi:10.1097/ALN.0b013e31826cb469.

  • Yilmaz, G., & Granger, D. N. (2010). Leukocyte recruitment and ischemic brain injury. [Research support, N.I.H., extramural research support, non-U.S. gov’t]. NeuroMolecular Medicine, 12(2), 193–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon, K., & Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: Insights from mouse mutants. Nature Neuroscience, 8(6), 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z. C., Liu, W. C., Liu, D. H., & Fan, L. (2007). Effect of Notch ligand Delta-1 on the differentiation and maturation of erythroid progenitors in humans. Zhonghua Xue Ye Xue Za Zhi, 28(6), 401–403.

    PubMed  Google Scholar 

  • Zacharek, A., Chen, J., Cui, X., Yang, Y., & Chopp, M. (2009). Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke, 40(1), 254–260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, H. P., Yuan, L. B., Zhao, R. N., Tong, L., Ma, R., Dong, H. L., et al. (2010). Isoflurane preconditioning induces neuroprotection by attenuating ubiquitin-conjugated protein aggregation in a mouse model of transient global cerebral ischemia. [Research support, non-U.S. gov’t]. Anesthesia and Analgesia, 111(2), 506–514.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Beijing, China; Grants 30772059/30972853 and 81371510 to Hailong Dong; Grant 81171051 to Yanyan Sun; Grant 81100901 to Binxiao Su) and the National Science Foundation for Distinguished Young Scholars (Beijing, China; Grant 30725039 to Lize Xiong).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-long Dong or Lize Xiong.

Additional information

Hao-peng Zhang, Yan-yan Sun, and Xiao-mei Chen have contributed equally to this work.

This work was conducted in the Department of Anesthesiology of Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hp., Sun, Yy., Chen, Xm. et al. The Neuroprotective Effects of Isoflurane Preconditioning in a Murine Transient Global Cerebral Ischemia–Reperfusion Model: The Role of the Notch Signaling Pathway. Neuromol Med 16, 191–204 (2014). https://doi.org/10.1007/s12017-013-8273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8273-7

Keywords

Navigation