Skip to main content

Advertisement

Log in

Data-Driven Identification of Targets for Fluorescence-Guided Surgery in Non-Small Cell Lung Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Intraoperative identification of lung tumors can be challenging. Tumor-targeted fluorescence-guided surgery can provide surgeons with a tool for real-time intraoperative tumor detection. This study evaluated cell surface biomarkers, partially selected via data-driven selection software, as potential targets for fluorescence-guided surgery in non-small cell lung cancers: adenocarcinomas (ADC), adenocarcinomas in situ (AIS), and squamous cell carcinomas (SCC).

Procedures

Formalin-fixed paraffin-embedded tissue slides of resection specimens from 15 patients with ADC and 15 patients with SCC were used and compared to healthy tissue. Molecular targets were selected based on two strategies: (1) a data-driven selection using > 275 multi-omics databases, literature, and experimental evidence; and (2) the availability of a fluorescent targeting ligand in advanced stages of clinical development. The selected targets were carbonic anhydrase 9 (CAIX), collagen type XVII alpha 1 chain (collagen XVII), glucose transporter 1 (GLUT1), G protein-coupled receptor 87 (GPR87), transmembrane protease serine 4 (TMPRSS4), carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), folate receptor alpha (FRα), integrin αvβ6 (αvβ6), and urokinase-type plasminogen activator receptor (uPAR). Tumor expression of these targets was assessed by immunohistochemical staining. A total immunostaining score (TIS, range 0–12), combining the percentage and intensity of stained cells, was calculated. The most promising targets in ADC were explored in six AIS tissue slides to explore its potential in non-palpable lesions.

Results

Statistically significant differences in TIS between healthy lung and tumor tissue for ADC samples were found for CEA, EpCAM, FRα, αvβ6, CAIX, collagen XVII, GLUT-1, and TMPRSS4, and of these, CEA, CAIX, and collagen XVII were also found in AIS. For SCC, EpCAM, uPAR, CAIX, collagen XVII, and GLUT-1 were found to be overexpressed.

Conclusions

EpCAM, CAIX, and Collagen XVII were identified using concomitant use of data-driven selection software and clinical evidence as promising targets for intraoperative fluorescence imaging for both major subtypes of non-small cell lung carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I et al (2019) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol 5(12):1749–1768

  2. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409

    Article  Google Scholar 

  3. Walter JE, Heuvelmans MA, de Jong PA, Vliegenthart R, van Ooijen PMA, Peters RB, Ten Haaf K, Yousaf-Khan U, van der Aalst CM, de Bock GH et al (2016) Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. Lancet Oncol 17(7):907–916

    Article  PubMed  Google Scholar 

  4. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JJ, Weenink C, Yousaf-Khan U, Horeweg N et al (2020) Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 382(6):503–513

    Article  PubMed  Google Scholar 

  5. Yamato Y, Tsuchida M, Watanabe T, Aoki T, Koizumi N, Umezu H, Hayashi J (2001) Early results of a prospective study of limited resection for bronchioloalveolar adenocarcinoma of the lung. Ann Thorac Surg 71(3):971–974

    Article  CAS  PubMed  Google Scholar 

  6. Chen T, Luo J, Wang R, Gu H, Gu Y, Huang Q, Wang Y, Zheng J, Yang Y, Zhao H (2018) Prognosis of limited resection versus lobectomy in elderly patients with invasive lung adenocarcinoma with tumor size less than or equal to 2 cm. J Thorac Dis 10(4):2231–2239

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoshizawa A, Motoi N, Riely GJ, Sima CS, Gerald WL, Kris MG, Park BJ, Rusch VW, Travis WD (2011) Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol 24(5):653–664

    Article  CAS  PubMed  Google Scholar 

  8. Cerfolio RJ, Bryant AS (2008) Is palpation of the nonresected pulmonary lobe(s) required for patients with non-small cell lung cancer? A prospective study. J Thorac Cardiovasc Surg 135(2):261–268

    Article  PubMed  Google Scholar 

  9. Ellis MC, Hessman CJ, Weerasinghe R, Schipper PH, Vetto JT (2011) Comparison of pulmonary nodule detection rates between preoperative CT imaging and intraoperative lung palpation. Am J Surg 201(5):619–622

    Article  PubMed  Google Scholar 

  10. Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, Lippman SM, Messer K, Molinolo A, Murphy JD et al (2018) Positive surgical margins in the 10 most common solid cancers. Sci Rep 8(1):5686

    Article  PubMed  PubMed Central  Google Scholar 

  11. Osarogiagbon RU, Lin CC, Smeltzer MP, Jemal A (2016) Prevalence, prognostic implications, and survival modulators of incompletely resected non-small cell lung cancer in the U.S. national cancer data base. J Thorac Oncol 11(1):e5-16

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wind J, Smit EJ, Senan S, Eerenberg JP (2007) Residual disease at the bronchial stump after curative resection for lung cancer. Eur J Cardiothorac Surg 32(1):29–34

    Article  PubMed  Google Scholar 

  13. Riquet M, Achour K, Foucault C, Le Pimpec BF, Dujon A, Cazes A (2010) Microscopic residual disease after resection for lung cancer: a multifaceted but poor factor of prognosis. Ann Thorac Surg 89(3):870–875

    Article  PubMed  Google Scholar 

  14. al-Kattan K, Sepsas E, Fountain SW, Townsend ER (1997) Disease recurrence after resection for stage I lung cancer. Eur J Cardiothorac Surg 12(3):380–4

    Article  CAS  PubMed  Google Scholar 

  15. Roth K, Nilsen TI, Hatlen E, Sorensen KS, Hole T, Haaverstad R (2008) Predictors of long time survival after lung cancer surgery: a retrospective cohort study. BMC Pulm Med 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  16. Uramoto H, Tanaka F (2014) Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res 3(4):242–249

    PubMed  PubMed Central  Google Scholar 

  17. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10(9):507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26(24):4012–4021

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Oosten M, Crane LM, Bart J, van Leeuwen FW, van Dam GM (2011) Selecting potential targetable biomarkers for imaging purposes in colorectal cancer using target selection criteria (TASC): a novel target identification tool. Transl Oncol 4(2):71–82

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research N (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–25

    Article  Google Scholar 

  21. Cancer Genome Atlas Research N (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511):543–50

    Article  Google Scholar 

  22. Consortium GT (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585

    Article  Google Scholar 

  23. Abrams ZB, Johnson TS, Huang K, Payne PRO, Coombes K (2019) A protocol to evaluate RNA sequencing normalization methods. BMC Bioinform 20(Suppl 24):679

    Article  CAS  Google Scholar 

  24. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C et al (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10(3):e0121314

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bausch-Fluck D, Goldmann U, Muller S, van Oostrum M, Muller M, Schubert OT, Wollscheid B (2018) The in silico human surfaceome. Proc Natl Acad Sci U S A 115(46):E10988–E10997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fonseca AL, da Silva VL, da Fonsêca MM, Meira IT, da Silva TE, Kroll JE, Ribeiro-Dos-Santos AM, Freitas CR, Furtado R, de Souza JE et al (2016) Bioinformatics analysis of the human surfaceome reveals new targets for a variety of tumor types. Int J Genomics 8346198

  27. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang JZ, Ismail-Beigi F (1998) Activation of Glut1 glucose transporter in human erythrocytes. Arch Biochem Biophys 356(1):86–92

    Article  CAS  PubMed  Google Scholar 

  29. Imrich S, Hachmeister M, Gires O (2012) EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr 6(1):30–38

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lonergan KM, Chari R, Coe BP, Wilson IM, Tsao MS, Ng RT, Macaulay C, Lam S, Lam WL (2010) Transcriptome profiles of carcinoma-in-situ and invasive non-small cell lung cancer as revealed by SAGE. PLoS ONE 5(2):e9162

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zito Marino F, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, Rossi G, Franco R (2019) Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int J Med Sci 16(7):981–989

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carnio S, Novello S, Papotti M, Loiacono M, Scagliotti GV (2013) Prognostic and predictive biomarkers in early stage non-small cell lung cancer: tumor based approaches including gene signatures. Transl Lung Cancer Res 2(5):372–381

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Predina JD, Newton AD, Xia L, Corbett C, Connolly C, Shin M, Sulyok LF, Litzky L, Deshpande C, Nie S et al (2018) An open label trial of folate receptor-targeted intraoperative molecular imaging to localize pulmonary squamous cell carcinomas. Oncotarget 9(17):13517–13529

    Article  PubMed  PubMed Central  Google Scholar 

  34. Predina JD, Newton AD, Keating J, Dunbar A, Connolly C, Baldassari M, Mizelle J, Xia L, Deshpande C, Kucharczuk J et al (2018) A phase I clinical trial of targeted intraoperative molecular imaging for pulmonary adenocarcinomas. Ann Thorac Surg 105(3):901–908

    Article  PubMed  Google Scholar 

  35. O’Shannessy DJ, Yu G, Smale R, Fu YS, Singhal S, Thiel RP, Somers EB, Vachani A (2012) Folate receptor alpha expression in lung cancer: diagnostic and prognostic significance. Oncotarget 3(4):414–425

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cagle PT, Zhai QJ, Murphy L, Low PS (2013) Folate receptor in adenocarcinoma and squamous cell carcinoma of the lung: potential target for folate-linked therapeutic agents. Arch Pathol Lab Med 137(2):241–244

    Article  CAS  PubMed  Google Scholar 

  37. Boogerd LS, van der Valk MJ, Boonstra MC, Prevoo HA, Hilling DE, van de Velde CJ, Sier CF, Fariña Sarasqueta A, Vahrmeijer AL (2018) Biomarker expression in rectal cancer tissue before and after neoadjuvant therapy. Onco Targets Ther 11:1655–1664

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li X, Xu K, Cen R, Deng J, Hao Z, Liu J, Takizawa H, Ng CSH, Marulli G, Kim MP et al (2021) Preoperative computer tomography-guided indocyanine green injection is associated with successful localization of small pulmonary nodules. Transl Lung Cancer Res 10(5):2229–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quan YH, Oh CH, Jung D, Lim JY, Choi BH, Rho J, Choi Y, Han KN, Kim BM, Kim C et al (2020) Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg 155(8):732–740

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang C, Liang J, Lei X, Xu X, Xiao Z, Luo L (2019) Diagnostic performance of perfusion computed tomography for differentiating lung cancer from benign lesions: a meta-analysis. Med Sci Monit 25:3485–3494

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bharadwaj S (n.d.) Evaluation of IRDye800CW-nimotuzumab in lung cancer surgery

  42. Rosenthal E (n.d.) A Phase I/II study evaluating the safety and pharmacokinetics of panitumumab-IRDye800 as an optical imaging agent to detect lung cancer during surgical procedures

  43. A Phase 2a, single-dose, open-label study to evaluate diagnostic performance, safety & timing of postdose imaging of ONM-100, an intraoperative fluorescence imaging agent for the detection of cancer, in patients with solid tumors undergoing routine surgery [Internet]. Available from: https://www.clinicaltrials.gov/ct2/show/record/NCT03735680

  44. Intraoperative imaging of pulmonary nodules by SGM-101 [Internet]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04315467

  45. Intraoperative Molecular Imaging Of Pulmonary Nodules By SGM-101, A Fluorochrome-labeled anti-carcino-embryonic antigen (CEA) monoclonal antibody [Internet]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04315467

  46. Hekman MC, Rijpkema M, Muselaers CH, Oosterwijk E, Hulsbergen-Van de Kaa CA, Boerman OC, Oyen WJ, Langenhuijsen JF, Mulders PF (2018) Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: a first in man study. Theranostics 8(8):2161–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A phase I study assessing the safety and performance of VB5-845D-800CW, an anti-Epcam fluorescent agent, for the intraoperative detection of gastrointestinal cancer [Internet]. Available from: https://www.trialregister.nl/trial/7363

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlijn Hutteman.

Ethics declarations

Ethical Approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meijer, R.P.J., Neijenhuis, L.K.A., Zeilstra, A.P. et al. Data-Driven Identification of Targets for Fluorescence-Guided Surgery in Non-Small Cell Lung Cancer. Mol Imaging Biol 25, 228–239 (2023). https://doi.org/10.1007/s11307-022-01791-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01791-5

Key words

Navigation