Skip to main content
Log in

Preliminary Results that Assess Metformin Treatment in a Preclinical Model of Pancreatic Cancer Using Simultaneous [18F]FDG PET and acidoCEST MRI

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We sought to determine if the synergy between evaluations of glucose uptake in tumors and extracellular tumor acidosis measured with simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) can improve longitudinal evaluations of the response to metformin treatment.

Procedures

A standard 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET protocol that evaluates glucose uptake in tumors, and a standard acidoCEST MRI protocol that measures extracellular pH (pHe) in tumors, were simultaneously performed to assess eight vehicle-treated (control) mice and eight metformin-treated mice 1 day before treatment, 1 day after initiating daily treatment with metformin, and 7 days after initiating treatment. Longitudinal changes in SUVmax and extracellular pH (pHe) were evaluated for each treatment group, and differences in SUVmax and pHe between metformin-treated and control groups were also evaluated.

Results

MRI acquisition protocols had little effect on the PET count rate, and the PET instrumentation had little effect on image contrast during acidoCEST MRI, verifying that [18F]FDG PET and acidoCEST MRI can be performed simultaneously. The average SUVmax of the tumor model had a significant decrease after 7 days of treatment with metformin, as expected. The average tumor pHe decreased after 7 days of metformin treatment, which reflected the inhibition of the consumption of cytosolic lactic acid caused by metformin. However, the average SUVmax of the tumor model was not significantly different between the metformin-treated and control groups after 7 days of treatment, and average pHe was also not significantly different between these groups. For comparison, the combination of average SUVmax and pHe measurements significantly differed between the treatment group and control group on Day 7.

Conclusions

[18F]FDG PET and acidoCEST MRI studies can be performed simultaneously. The synergistic combination of assessing glucose uptake and tumor acidosis can improve differentiation of a drug-treated group from a control group during drug treatment of a tumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Bos R, van der Hoeven JJ, van der Wall E et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20(2):379–387. https://doi.org/10.1200/JCO.2002.20.2.379

    Article  PubMed  CAS  Google Scholar 

  2. de Langen AJ, van den Boogaart, Lubberink M et al (2011) Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI. J Nuc Med 52(1):48–55. https://doi.org/10.2967/jnumed.110.078261

    Article  Google Scholar 

  3. Guo J, Guo N, Lang L, Kiesewetter DO, Xie Q, Li Q, Eden HS, Niu G, Chen X (2014) 18F-alfatide II and 18F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J Nuc Med 55(1):154–160. https://doi.org/10.2967/jnumed.113.122069

    Article  CAS  Google Scholar 

  4. Chen LQ, Pagel MD (2015) Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods. Adv Radiol 2015:206405. https://doi.org/10.1155/2015/206405

  5. Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD (2014) Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Res Med 72(5):1408–1417. https://doi.org/10.1002/mrm.25053

    Article  Google Scholar 

  6. Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CM, Pagel MD (2015) Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with acidoCEST MRI. Mol Imaging Bio 17(4):488–496. https://doi.org/10.1007/s11307-014-0816-2

    Article  CAS  Google Scholar 

  7. Jones KM, Randtke EA, Yoshimaru ES et al (2016) Clinical translation of acidosis measurements with acidoCEST MRI. Mol Biol Imaging 19:617–626

    Article  CAS  Google Scholar 

  8. Longo DL, Dastru W, Digilio G et al (2011) Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent fpr pH mapping of kidneys: in vivo studies in mice at 7 T. Magn Reson Med 65(1):202–211. https://doi.org/10.1002/mrm.22608

    Article  PubMed  CAS  Google Scholar 

  9. Delli Castelli D, Ferrauto G, Cutrin JC, Terreno E, Aime S (2014) In vivo maps of extracellular pH in murine melanoma by CEST-MRI. Magn Reson Med 71(1):326–332. https://doi.org/10.1002/mrm.24664

    Article  PubMed  CAS  Google Scholar 

  10. Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc 136(41):14333–14336. https://doi.org/10.1021/ja5059313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rancan G, Casstelli DD, Aime S (2016) MRI CEST at 1T with large μeff Ln3+ complexes Tm3+-HPDO3A: an efficient MRI reporter. Magn Reson Med 75(1):329–336. https://doi.org/10.1002/mrm.25589

    Article  PubMed  CAS  Google Scholar 

  12. Chen MM, Chen CY, Shen ZW et al (2017) Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget 8(28):45759–45767. https://doi.org/10.18632/oncotarget.17404

    Article  PubMed  PubMed Central  Google Scholar 

  13. Akhenblit PJ, Hanke NT, Gill A, et al. (2016) Assessing metabolic changes in response to mTOR inhibition in a mantle cell lymphoma xenograft model using acidoCEST MRI. Mol Imaging 29. doi:https://doi.org/10.1177/1536012116645439

  14. Akhenblit PJ, Howison CM, Pagel MD (2015) Assessing changes in tumor extracellular pH during metabolism-targeting therapies with acidoCEST MRI. Proc WMIC 576

  15. Anemone A, Consolin L, Conti L et al (2017) In vivo evaluation of tumor acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int J Oncol 51(2):498–506. https://doi.org/10.3892/ijo.2017.4029

    Article  PubMed  Google Scholar 

  16. Chen LQ, Howison CM, Spier C, Stopeck AT, Malm SW, Pagel MD, Baker AF (2015) Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models. Leuk Lymphoma 56(5):1432–1439. https://doi.org/10.3109/10428194.2014.933218

    Article  PubMed  CAS  Google Scholar 

  17. Aime S, Calabi L, Biondi L, de Miranda M, Ghelli S, Paleari L, Rebaudengo C, Terreno E (2005) Iopamidol: exploring the potential use of a well-established x-ray contrast agent for MRI. Magn Reson Med 53(4):830–834. https://doi.org/10.1002/mrm.20441

    Article  PubMed  CAS  Google Scholar 

  18. Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA, Howison CM, Pagel MD (2015) A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging 10(6):446–455. https://doi.org/10.1002/cmmi.1647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143(1):79–87. https://doi.org/10.1006/jmre.1999.1956

    Article  PubMed  CAS  Google Scholar 

  20. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M, Lichy MP, Eichner M, Klingel K, Reischl G, Widmaier S, Röcken M, Nutt RE, Machulla HJ, Uludag K, Cherry SR, Claussen CD, Pichler BJ (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465. https://doi.org/10.1038/nm1700

    Article  PubMed  CAS  Google Scholar 

  21. Goertzen AL, Stortz G, Thiessen JD et al (2016) First results from a high-resolution small animal SiPm PET insert for ET/MR imaging at 7T. IEEE Trans Nucl Med 85:22424–22433

    Google Scholar 

  22. Shah T, Lu L, Dell KM, Pagel MD, Griswold MA, Flask CA (2011) CEST-FISP: a novel technique for rapid chemical exchange saturation transfer MRI at 7T. Magn Reson Med 65(2):432–437. https://doi.org/10.1002/mrm.22637

    Article  PubMed  CAS  Google Scholar 

  23. Stortz G, Thiessen JD, Bishop D, Khan MS, Kozlowski P, Retière F, Schellenberg G, Shams E, Zhang X, Thompson CJ, Goertzen A, Sossi V (2017) Performance of a PET insert for high resolution small animal PET/MR imaging at 7T. J Nucl Med:jnumed.116.187666. https://doi.org/10.2967/jnumed.116.187666

  24. Thiessen JD, Shams E, Stortz G, Schellenberg G, Bishop D, Khan MS, Kozlowski P, Retière F, Sossi V, Thompson CJ, Goertzen AL (2016) MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI. Phys Med Biol 61(22):7934–7956. https://doi.org/10.1088/0031-9155/61/22/7934

    Article  PubMed  CAS  Google Scholar 

  25. Sheth VR, Liu G, Li Y, Pagel MD (2012) Improved pH measurements with a single PARACEST MRI contrast agent. Contrast Media Molec Imaging 7(1):26–34. https://doi.org/10.1002/cmmi.460

    Article  CAS  Google Scholar 

  26. Jones KM, Randtke EA, Howison CM, Pagel MD (2014) Respiration gating and Bloch fitting improve pH measurements with acidoCEST MRI in an overian orthotopic tumor model. Proc SPIE Int Soc Opt Eng 9788:978815. https://doi.org/10.1117/12.2216418

  27. Triggle CR, Ding H (2017) Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta Physiol 219(1):138–151. https://doi.org/10.1111/apha.12644

    Article  CAS  Google Scholar 

  28. Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M, Aime S (2016) In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–7470. https://doi.org/10.1158/0008-5472.CAN-16-0825

    Article  PubMed  CAS  Google Scholar 

  29. Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49(1):17–26. https://doi.org/10.1093/ilar.49.1.17

    Article  PubMed  CAS  Google Scholar 

  30. Wolf G, Abolmaali N (2009) Imaging tumour-bearing animals using clinical scanners. Int J Radiat Biol 85(9):752–762. https://doi.org/10.1080/09553000902954520

    Article  PubMed  CAS  Google Scholar 

  31. Lukasik VM, Gillies RJ (2003) Animal anesthesia for in vivo magnetic resonance. NMR Biomed 16(8):459–467. https://doi.org/10.1002/nbm.836

    Article  PubMed  CAS  Google Scholar 

  32. Yousef M, Tsiani E (2017) Metformin in lung cancer: review of in vitro and in vivo animal studies. Cancers Cancers (Basel) 9(5):E45. https://doi.org/10.3390/cancers9050045

  33. Lonardo E, Cioffi M, Sancho P et al (2013) Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One 8(10):e76518. https://doi.org/10.1371/journal.pone.0076518

  34. Yeon K, Lee MS (2015) New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 6:600–609

    Article  CAS  Google Scholar 

  35. DeFronzo R, Fleming AG, Chen K, Bicsak TA (2015) Metformin-associated lactic acidosis: current perspectives on causes and risk. Metab Clin Exp 65:20–29

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Christine Howison for assistance with PET/MRI studies, and Dr. Neale Hanke for assistance in preparing the tumor model. This research was supported by NIH grants R01 CA167183 and P50 CA95060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Pagel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 8298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldenberg, J.M., Cárdenas-Rodríguez, J. & Pagel, M.D. Preliminary Results that Assess Metformin Treatment in a Preclinical Model of Pancreatic Cancer Using Simultaneous [18F]FDG PET and acidoCEST MRI. Mol Imaging Biol 20, 575–583 (2018). https://doi.org/10.1007/s11307-018-1164-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1164-4

Key words

Navigation