Skip to main content

Advertisement

Log in

Targeted metabolomics highlights perturbed metabolism in the brain of autism spectrum disorder sufferers

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficiencies in social interactions and communication, combined with restricted and repetitive behavioral issues.

Objectives

As little is known about the etiopathophysiology of ASD and early diagnosis is relatively subjective, we aim to employ a targeted, fully quantitative metabolomics approach to biochemically profile post-mortem human brain with the overall goal of identifying metabolic pathways that may have been perturbed as a result of the disease while uncovering potential central diagnostic biomarkers.

Methods

Using a combination of 1H NMR and DI/LC–MS/MS we quantitatively profiled the metabolome of the posterolateral cerebellum from post-mortem human brain harvested from people who suffered with ASD (n = 11) and compared them with age-matched controls (n = 10).

Results

We accurately identified and quantified 203 metabolites in post-mortem brain extracts and performed a metabolite set enrichment analyses identifying 3 metabolic pathways as significantly perturbed (p < 0.05). These include Pyrimidine, Ubiquinone and Vitamin K metabolism. Further, using a variety of machine-based learning algorithms, we identified a panel of central biomarkers (9-hexadecenoylcarnitine (C16:1) and the phosphatidylcholine PC ae C36:1) capable of discriminating between ASD and controls with an AUC = 0.855 with a sensitivity and specificity equal to 0.80 and 0.818, respectively.

Conclusion

For the first time, we report the use of a multi-platform metabolomics approach to biochemically profile brain from people with ASD and report several metabolic pathways which are perturbed in the diseased brain of ASD sufferers. Further, we identified a panel of biomarkers capable of distinguishing ASD from control brains. We believe that these central biomarkers may be useful for diagnosing ASD in more accessible biomatrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The 1H NMR spectroscopy and mass spectrometry metabolomics data have been deposited to the MetaboLights. Archive (https://www.ebi.ac.uk/metabolights/mysubmissions?status=PRIVATE) via the MetaboLights partner repository with the data set MTBL960.

References

  • Altman, D. G., & Bland, J. M. (1995). Absence of evidence is not evidence of absence. BMJ,311, 485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahado-Singh, R., Poon, L. C., Yilmaz, A., Syngelaki, A., Turkoglu, O., Kumar, P., et al. (2017a). Integrated proteomic and metabolomic prediction of term preeclampsia. Scientific Reports,7, 16189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahado-Singh, R. O., Graham, S. F., Han, B., Turkoglu, O., Ziadeh, J., Mandal, R., et al. (2016). Serum metabolomic markers for traumatic brain injury: A mouse model. Metabolomics,12, 100.

    Article  CAS  Google Scholar 

  • Bahado-Singh, R. O., Syngelaki, A., Mandal, R., Graham, S. F., Akolekar, R., Han, B., et al. (2017b). Metabolomic determination of pathogenesis of late-onset preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine,30, 658–664.

    Article  CAS  Google Scholar 

  • Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., et al. (2014). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States. MMWR Surveillance Summaries, 67(6), 1–23. https://doi.org/10.15585/mmwr.ss6706a1.

    Article  Google Scholar 

  • Blatt, G. J. (2012). The neuropathology of autism. Scientifica (Cairo),2012, 703675.

    Google Scholar 

  • Brown, C. E. (1981). Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. Journal of Theoretical Biology,88, 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, A., & Chauhan, V. (2006). Oxidative stress in autism. Pathophysiology,13, 171–181.

    Article  CAS  PubMed  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research,46, W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman, M., & Blass, J. P. (1985). Autism and lactic acidosis. Journal of Autism and Developmental Disorders,15, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Deth, R., Muratore, C., Benzecry, J., Power-Charnitsky, V. A., & Waly, M. (2008). How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology,29, 190–201.

    Article  CAS  PubMed  Google Scholar 

  • Diémé, B., Mavel, S., Blasco, H., Tripi, G., Bonnet-Brilhault, F., Malvy, J., et al. (2015). Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. Journal of Proteome Research,14, 5273–5282.

    Article  PubMed  CAS  Google Scholar 

  • Dolske, M. C., Spollen, J., Mckay, S., Lancashire, E., & Tolbert, L. (1993). A preliminary trial of ascorbic acid as supplemental therapy for autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry,17, 765–774.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., et al. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cellular and Molecular Neurobiology,22, 171–175.

    Article  PubMed  Google Scholar 

  • Fiandaca, M. S., Zhong, X., Cheema, A. K., Orquiza, M. H., Chidambaram, S., Tan, M. T., et al. (2015). Plasma 24-metabolite panel predicts preclinical transition to clinical stages of alzheimer's disease. Frontiers in Neurology,6, 237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye, R. E. (2012). Biomarker of abnormal energy metabolism in children with autism spectrum disorder. North American Journal of Medicine & Science,5, 141–147.

    Article  Google Scholar 

  • Frye, R. E., Melnyk, S., & Macfabe, D. F. (2013). Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Translational Psychiatry,3, e220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli, M., Lecca, D., Abbracchio, M. P., & Ceruti, S. (2017). Pathophysiological role of purines and pyrimidines in neurodevelopment: Unveiling new pharmacological approaches to congenital brain diseases. Frontiers in Pharmacology,8, 941–941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gevi, F., Zolla, L., Gabriele, S., & Persico, A. M. (2016). Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Molecular Autism,7, 47–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldani, A. A. S., Downs, S. R., Widjaja, F., Lawton, B., & Hendren, R. L. (2014). Biomarkers in autism. Frontiers in Psychiatry,5, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Golnik, A. E., & Ireland, M. (2009). Complementary alternative medicine for children with autism: A physician survey. Journal of Autism and Developmental Disorders,39, 996–1005.

    Article  PubMed  Google Scholar 

  • Graham, S. F., Chevallier, O. P., Kumar, P., Turkoglu, O., & Bahado-Singh, R. O. (2017a). Metabolomic profiling of brain from infants who died from sudden infant death syndrome reveals novel predictive biomarkers. Journal of Perinatology,37, 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Graham, S. F., Chevallier, O. P., Kumar, P., Türkoğlu, O., & Bahado-Singh, R. O. (2016a). High resolution metabolomic analysis of ASD human brain uncovers novel biomarkers of disease. Metabolomics,12, 62.

    Article  CAS  Google Scholar 

  • Graham, S. F., Chevallier, O. P., Roberts, D., Holscher, C., Elliott, C. T., & Green, B. D. (2013). Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer's disease. Analytical Chemistry,85, 1803–1811.

    Article  CAS  PubMed  Google Scholar 

  • Graham, S. F., Kumar, P. K., Bjorndahl, T., Han, B., Yilmaz, A., Sherman, E., et al. (2016b). Metabolic signatures of Huntington's disease (HD): (1)H NMR analysis of the polar metabolome in post-mortem human brain. Biochimica et Biophysica Acta,1862, 1675–1684.

    Article  CAS  PubMed  Google Scholar 

  • Graham, S. F., Pan, X., Yilmaz, A., Macias, S., Robinson, A., Mann, D., et al. (2018a). Targeted biochemical profiling of brain from Huntington's disease patients reveals novel metabolic pathways of interest. Biochimica et Biophysica Acta,1864, 2430–2437.

    Article  CAS  PubMed  Google Scholar 

  • Graham, S. F., Rey, N. L., Yilmaz, A., Kumar, P., Madaj, Z., Maddens, M., et al. (2018b). Biochemical profiling of the brain and blood metabolome in a mouse model of prodromal Parkinson's disease reveal distinct metabolic profiles. Journal of Proteome Research,17, 2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, S. F., Turkoglu, O., Kumar, P., Yilmaz, A., Bjorndahl, T. C., Han, B., et al. (2017b). Targeted metabolic profiling of post-mortem brain from infants who died from sudden infant death syndrome. Journal of Proteome Research,16, 2587–2596.

    Article  CAS  PubMed  Google Scholar 

  • Grunewald, R. A. (1993). Ascorbic acid in the brain. Brain Research, Brain Research Reviews,18, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, F. E., & May, J. M. (2009). Vitamin C function in the brain: Vital role of the ascorbate transporter (SVCT2). Free Radical Biology & Medicine,46, 719–730.

    Article  CAS  Google Scholar 

  • Kemper, T. L., & Bauman, M. L. (1993). The contribution of neuropathologic studies to the understanding of autism. Neurologic Clinics,11, 175–187.

    Article  CAS  PubMed  Google Scholar 

  • Kern, J. K., & Jones, A. M. (2006). Evidence of toxicity, oxidative stress, and neuronal insult in autism. Journal of Toxicology and Environmental Health, Part B: Critical Reviews,9, 485–499.

    Article  CAS  Google Scholar 

  • Klein, J. A., & Ackerman, S. L. (2003). Oxidative stress, cell cycle, and neurodegeneration. Journal of Clinical Investigation,111, 785–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohen, R., Yamamoto, Y., Cundy, K. C., & Ames, B. N. (1988). Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proceedings of the National Academy of Sciences of the United States of America,85, 3175–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurochkin, I., Khrameeva, E., Tkachev, A., Stepanova, V., Vanyushkina, A., Stekolshchikova, E., et al. (2019). Metabolome signature of autism in the human prefrontal cortex. Communications Biology,2, 234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecca, D., & Ceruti, S. (2008). Uracil nucleotides: From metabolic intermediates to neuroprotection and neuroinflammation. Biochemical Pharmacology,75, 1869–1881.

    Article  CAS  PubMed  Google Scholar 

  • Liu, A., Zhou, W., Qu, L., He, F., Wang, H., Wang, Y., et al. (2019). Altered urinary amino acids in children with autism spectrum disorders. Frontiers in Cellular Neuroscience,13, 7–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loffler, M., Carrey, E. A., & Zameitat, E. (2015). Orotic acid, more than just an intermediate of pyrimidine de novo synthesis. Journal of Genetics and Genomics,42, 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Lombard, J. (1998). Autism: A mitochondrial disorder? Medical Hypotheses,50, 497–500.

    Article  CAS  PubMed  Google Scholar 

  • Macfabe, D. F. (2015). Enteric short-chain fatty acids: Microbial messengers of metabolism, mitochondria, and mind: Implications in autism spectrum disorders. Microbial Ecology in Health and Disease,26, 28177.

    Article  PubMed  CAS  Google Scholar 

  • Mapstone, M., Cheema, A. K., Fiandaca, M. S., Zhong, X., Mhyre, T. R., Macarthur, L. H., et al. (2014). Plasma phospholipids identify antecedent memory impairment in older adults. Nature Medicine,20, 415–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming, X., Stein, T. P., Barnes, V., Rhodes, N., & Guo, L. (2012). Metabolic perturbance in autism spectrum disorders: A metabolomics study. Journal of Proteome Research,11, 5856–5862.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Nasaruddin, M. B., Elliott, C. T., Mcguinness, B., Passmore, A. P., Kehoe, P. G., et al. (2016a). Alzheimer's disease-like pathology has transient effects on the brain and blood metabolome. Neurobiology of Aging,38, 151–163.

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak, H. V. (2011). Theoretical aspects of autism: Biomarkers—A review. J Immunotoxicol,8, 80–94.

    Article  PubMed  Google Scholar 

  • Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., et al. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE,10, e0124219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebec, G. V., & Pierce, R. C. (1994). A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Progress in Neurobiology,43, 537–565.

    Article  CAS  PubMed  Google Scholar 

  • Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., et al. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC Autopsy Research Report. American Journal of Psychiatry,143, 862–866.

    Article  CAS  PubMed  Google Scholar 

  • Rose, S., Niyazov, D. M., Rossignol, D. A., Goldenthal, M., Kahler, S. G., & Frye, R. E. (2018). Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Molecular Diagnosis & Therapy,22, 571–593.

    Article  CAS  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2012a). Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Molecular Psychiatry,17, 290–314.

    Article  CAS  PubMed  Google Scholar 

  • Rotholz, D. A., Kinsman, A. M., Lacy, K. K., & Charles, J. (2017). Improving early identification and intervention for children at risk for autism spectrum disorder. Pediatrics,139(2), e20161061. https://doi.org/10.1542/peds.2016-1061.

    Article  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological),58, 267–288.

    Article  Google Scholar 

  • Urban, M., Enot, D. P., Dallmann, G., Körner, L., Forcher, V., Enoh, P., et al. (2010). Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Analytical Biochemistry,406, 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE,14, e0224365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D. L., et al. (2017). Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathologica,134, 537–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma, V. R., Oommen, A. M., Varma, S., Casanova, R., An, Y., Andrews, R. M., et al. (2018). Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Medicine, 15(1), e1002482. https://doi.org/10.1371/journal.pmed.1002482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Liang, S., Wang, M., Gao, J., Sun, C., Wang, J., et al. (2016). Potential serum biomarkers from a metabolomics study of autism. Journal of Psychiatry & Neuroscience:JPN,41, 27–37.

    Article  Google Scholar 

  • Wang, L., Angley, M. T., Gerber, J. P., & Sorich, M. J. (2011). A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers,16, 537–552.

    Article  CAS  PubMed  Google Scholar 

  • West, P. R., Amaral, D. G., Bais, P., Smith, A. M., Egnash, L. A., Ross, M. E., et al. (2014). Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS ONE,9, e112445–e112445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wishart, D. S. (2010). Computational approaches to metabolomics. Methods in Molecular Biology,593, 283–313.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics,9, 280–299.

    Article  CAS  PubMed  Google Scholar 

  • Zeviani, M., Bertagnolio, B., & Uziel, G. (1996). Neurological presentations of mitochondrial diseases. Journal of Inherited Metabolic Disease,19, 504–520.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the NICHD Brain and Tissue Bank for Developmental Disorder ad NICH Contract #HHSN275200900011C, Ref. No. N01-HD-9-0011 for supplying the tissue used herein. In addition, this work was partly funded by the generous contribution made by the Fred A. & Barbara M. Erb Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Designing research studies (SFG, ROB-S), conducting experiments (AY, TB, RM, ZU), statistical analysis (BH, IU), analyzing data (SFG, BH, IU, AY), and writing the manuscript (All authors contributed to the writing of the manuscript).

Corresponding author

Correspondence to Stewart F. Graham.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This study was performed in accordance with the 1964 Helsinki declaration and its later amendments, and ethical approval was obtained from the Beaumont Institutional Review Board (IRB# 2014-142).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Supplementary file2 (DOCX 20 kb)

11306_2020_1685_MOESM3_ESM.docx

Supplementary file3 (DOCX 15 kb) Table S1. Clinical and demographic information of patient and control groups. The donor highlighted in Bold was excluded from the study.

Supplementary file4 (DOCX 13 kb) Table S2. The results of the demographic comparisons between ASD and control brains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, S.F., Turkoglu, O., Yilmaz, A. et al. Targeted metabolomics highlights perturbed metabolism in the brain of autism spectrum disorder sufferers. Metabolomics 16, 59 (2020). https://doi.org/10.1007/s11306-020-01685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01685-z

Keywords

Navigation