Skip to main content
Log in

A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin challenged Escherichia coli

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The field of lipidomics focuses upon the non-targeted analysis of lipid composition, the process of which follows similar routines to those applied in conventional metabolic profiling, however lipidomics differs with respect to the sample preparation steps and chosen analytical platform applied to the sample analysis. Conventionally, lipidomics has applied analytical techniques such as direct infusion mass spectrometry and more recently reverse phase liquid chromatography–mass spectrometry, for the detection of mono-, di-, and tri-acyl glycerols, phospholipids, and other complex lipophilic species such as sterols. The field is rapidly expanding, especially with respect to the clinical sciences where it is known that changes of lipid composition, especially phospholipids, are commonly associated with many disease processes. As a proof of principle study, a small number of Escherichia coli isolates were selected on the basis of their sensitivity to a second generation fluoroquinolone antibiotic, known as Ciprofloxacin (E. coli isolates 161 and 171, non-ST131 isolates, which are resistant and sensitive respectively: E. coli isolates 160 and 173, ST131 sequence isolates which are resistant and susceptible respectively). It has been proposed that Ciprofloxacin may be a surface active drug that interacts at the surface-water interface of the phospholipid bi-layer where the head groups reside. Further, antibiotic resistance through intracellular exclusion is known to result in remodelling of the phospholipid membrane. Therefore, to study the effects of Ciprofloxacin on both susceptible and resistant bacterial strains, lipid profiling would present an informative approach. Control and antibiotic challenged cultures for each of the isolates were compared for changes in metabolite and lipid composition as detected by FT-IR spectroscopy and RP-UHPLC–MS, and appraised with a variety of chemometric data analysis approaches. The developed bacterial lipidomics workflow was deemed to be highly reproducible (with respect to the employed technical and analytical routines) and led to the detection of a large array of lipid classes as well as highlighting a range of significant lipid alterations that differed in regulation between susceptible and resistant E. coli isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allwood, J. W., Clarke, A., Goodacre, R., & Mur, L. A. J. (2010). Dual metabolomics: A novel approach to understanding plant-pathogen interactions. Phytochem., 71, 590–597.

    Article  Google Scholar 

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiologia Plantarum, 132, 117–135.

    CAS  PubMed  Google Scholar 

  • Allwood, J. W., Ellis, D. I., Heald, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 46, 351–368.

    Article  CAS  PubMed  Google Scholar 

  • Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography—electron impact—time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • AlRabiah, H., Correa, E., Upton, M., & Goodacre, R. (2013). High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy. The Analyst, 138, 1363–1369.

    Article  CAS  PubMed  Google Scholar 

  • AlRabiah, H., Xu, Y., Rattray, N. J. W., Vaughan, A. A., Gibreel, T., Sayqal, A., et al. (2014). Multiple metabolomics of uropathogenic E. coli reveal different information content in terms of metabolic potential compared to virulence factors. The Analyst. doi:10.1039/c4an00176a.

    PubMed  Google Scholar 

  • Ames, G. F. (1968). Lipids of Salmonella typhimurium and Escherichia coli: Structure and metabolism. Journal of Bacteriology, 95, 833–843.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bensikaddour, H., Snoussi, K., Lins, L., Van Bambeke, F., Tulkens, P. M., Brasseur, R., et al. (2008). Interactions of ciprofloxacin with DPPC and DPPG: Fluorescence anisotropy, ATR–FTIR and 31P NMR spectroscopies and conformational analysis. Biochimica et Biophysica Acta, 1778, 2535–2543.

    Article  CAS  PubMed  Google Scholar 

  • Biais, B., Allwood, J. W., Deborde, C., Xu, Y., Maucort, M., Beauvoit, B., et al. (2009). 1H-NMR, GC–EI–TOF/MS, and dataset correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Analytical Chemistry, 81, 2884–2894.

    Article  CAS  PubMed  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 811–917.

    Article  Google Scholar 

  • Brown, M., Wedge, D., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., et al. (2011). Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27, 1108–1112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castrillo, J. I., Zeef, L. A., Hoyle, D. C., Zhang, N., Hayes, A., Gardner, D. C. J., et al. (2007). Growth control of the eukaryote cell: A systems biology study in yeast. Journal of Biology, 6, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Crompton, M. J., Dunstan, R. H., Macdonald, M. M., Gottfries, J., von Eiff, C., & Roberts, T. K. (2014). Small changes in environmental paramaters lead to alterations in antiobiotic resistance, cell morphology, and membrane fatty acid composition in Staphylococcus lugdunensis. PLoS ONE, 9(4), e92296.

    Article  PubMed Central  PubMed  Google Scholar 

  • De Vos, C. H. R., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.

    Article  PubMed  Google Scholar 

  • Diederen, B. M., & Kluytmans, J. A. (2006). The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. The Journal of Infection, 52, 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Brown, M., Baker, P. N., Redman, C. W. G., Kenny, L. C., et al. (2008). Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-orbitrap mass spectrometry system. Journal of Chromatography B, 871(2), 288–298.

    Article  CAS  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Deepak, S. M., Buch, M. H., McDowell, G., Spasic, I., et al. (2007). Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics, 3, 413–426.

    Article  CAS  Google Scholar 

  • Ellis, D. I., & Goodacre, R. (2006). Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 131, 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Bianchi, G., & Kell, D. B. (2002). Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. The Analyst, 11, 1457–1462.

    Article  Google Scholar 

  • Greenwood, D. (2000). Antimicrobial chemotherapy (4th ed.). Norfolk: Oxford University Press Inc.

    Google Scholar 

  • Griffin, J. L., & Kauppinen, R. A. (2007). Tumour metabolomics in animal models of human cancer. Journal of Proteome Research, 6, 498–505.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., & Gross, R. W. (2005). Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrometry Reviews, 24, 367–412.

    Article  CAS  PubMed  Google Scholar 

  • Herrgård, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., et al. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 26, 1155–1160.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaper, J. B., Nataro, J. B., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2, 123–140.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenny, L. C., Broadhurst, D. I., Dunn, W., Brown, M., North, R. A., McCowan, L., et al. (2010). Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension, 56, 741–749.

    Article  CAS  PubMed  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.

    Article  CAS  PubMed  Google Scholar 

  • Kolak, M., Westerbacka, J., Velagapudi, V. R., Wagsater, D., Yetukuri, L., Makkonen, J., et al. (2007). Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes, 56, 1960–1968.

    Article  CAS  PubMed  Google Scholar 

  • Lau, S. H., Reddy, S., Cheesbrough, J., Bolton, F. J., Willshaw, G., Cheasty, T., et al. (2008). Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. Journal of Clinical Microbiology, 46, 1076–1080.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leying, H., Suerbaum, S., Kroll, H.-P., Karch, H., & Opferkuch, W. (1986). Influence of ß-lactam antibiotics and ciprofloxacin on composition and immunogenicity of Escherichia coli outer membrane. Antimicrobial Agents and Chemotherapy, 30, 475–480.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, R. G. T., Allwood, J. W., Galster, A. M., Urban, M., Daudi, A., Canning, G., et al. (2010). A combined 1H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp. Molecular Plant-Microbe Interactions, 23, 1605–1618.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie, D. A., Defernez, M., Dunn, W. B., Brown, M., Fuller, L. J., Seco de Herrera, S. R. M., et al. (2008). Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics. Yeast, 25, 501–512.

    Article  CAS  PubMed  Google Scholar 

  • Mattila, I., Seppänen-Laakso, T., Suortti, T., & Orešič, M. (2008). Application of lipidomics and metabolomics to the study of adipose tissue. Methods in Molecular Biology, 456, 123–130.

    Article  PubMed  Google Scholar 

  • Merino, S., Doménech, O., Diez, I., Sanz, F., Vinas, M., Montero, M. T., et al. (2003). Effects of ciprofloxacin on Escherichia coli lipid bilayers: An Atomic Force Microscopy Study. Langmuir, 19, 6922–6927.

    Article  CAS  Google Scholar 

  • Mori, H. (2004). From the Sequence to Cell Modelling: Comprehensive Functional Genomics in Escherichia coli. Journal of Biochemistry and Molecular Biology, 37, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Okusu, H., Ma, D., & Nikaido, H. (1996). AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. Journal of Bacteriology, 178, 306–308.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orešič, M., Simmel, S., Sysi-Aho, M., Näntö-Salonen, K., Seppänen-Laakso, T., Parikka, V., et al. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. The Journal of Experimental Medicine, 205, 2975–2984.

    Article  PubMed Central  PubMed  Google Scholar 

  • Poole, K., Krebes, K., McNally, C., & Neshat, S. (1993). Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. Journal of Bacteriology, 22, 7363–7372.

    Google Scholar 

  • Preisner, O., Almeida Lopes, A., Guiomar, R., Machado, J., & Menezes, J. C. (2007). Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Analytical and Bioanalytical Chemistry, 387, 1739–1748.

    Article  CAS  PubMed  Google Scholar 

  • RajBhandary, U. L., & Söll, D. (2008). Aminoacyl-tRNAs, the bacterial cell envelope, and antibiotics. Proceedings of the National Academy of Sciences, 105, 5285–5286.

    Article  CAS  Google Scholar 

  • Riley, M., Abe, T., Arnaud, M. B., Berlyn, M. K. B., Blattner, F. R., Chaudhuri, R. R., et al. (2006). Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Research, 34, 1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 13, 11–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rojas-Cherto, M., Peironcely, J. E., Kasper, P. T., van der Hooft, J. J. J., de Vos, R. C. H., Vreeken, R., et al. (2012). Metabolite identification using automated comparison of high-resolution multistage mass spectral trees. Analytical Chemistry, 84, 5524–5534.

    Article  CAS  PubMed  Google Scholar 

  • Roux, A., Xu, Y., Heilier, J.-F., Olivier, M.-F., Ezan, E., Tabet, J.-C., et al. (2012). Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Analytical Chemistry, 84, 6429–6437.

    Article  CAS  PubMed  Google Scholar 

  • Roy, H., & Ibba, M. (2008). RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proceedings of the National Academy of Sciences, 105, 4667–4672.

    Article  CAS  Google Scholar 

  • Sáenz, Y., Briñas, L., Domínguez, E., Ruiz, J., Zarazaga, M., Vila, J., et al. (2004). Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrobial Agents and Chemotherapy, 48, 3996–4001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology and biotechnology. Annual Review of Plant Biology, 61, 463–489.

    Article  CAS  PubMed  Google Scholar 

  • Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tikunov, Y., De Vos, C. H. R., Gonzalez-Paramas, A. M., Hall, R. D., & Bovy, A. G. (2010). A role for differtential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach. Plant Physiology, 152, 55–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomasz, A. (1994). Multiple-antibiotic-resistant bacteria—A report on the Rockefeller University Workshop. The New England Journal of Medicine, 330, 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • van der Hooft, J. J. J., Vervoort, J., Bino, R. J., Beekwilder, J., & de Vos, R. C. H. (2011). Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation. Analytical Chemistry, 83, 409–416.

    Article  PubMed  Google Scholar 

  • van der Hooft, J. J. J., Vervoort, J., Bino, R. J., & de Vos, R. C. H. (2012). Spectral trees as a robust annotation tool in LC–MS based metabolomics. Metabolomics, 8, 691–703.

    Article  Google Scholar 

  • Van Der Werf, M. J., Overkamp, K. M., Mulwijk, B., Koek, M. M., Van Der Werff-Van Der Vat, B. J. C., Jellema, R. H., Coulier, L. & Hankemeier, T. (2008). Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Molecular Biosystems, 4, 315–327.

  • Velagapudi, V. R., Hezaveh, R., Reigstad, C. S., Gopalacharyulu, P., Yetukuri, L., Islam, S., et al. (2010). The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 51, 1101–1112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wedge, D. C., Allwood, J. W., Dunn, W. B., Vaughan, A. A., Simpson, K., Brown, M., et al. (2011). Is serum or plasma more appropriate for inter-subject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Analytical Chemistry, 83, 6689–6697.

    Article  CAS  PubMed  Google Scholar 

  • Wehlri, P. M., Lindberg, E., Sparén, A., Josefson, M., Dunstan, R. H., Wold, A. E., et al. (2013). Exploring bacterial phenotypic diversity using factorial design and FTIR multivariate fingerprinting. Journal of Chemometrics. doi:10.1002/cem.2588.

    Google Scholar 

  • Wiener, J., Quinn, J. P., Bradford, P. A., Goering, R. V., Nathan, C., Bush, K., et al. (1999). Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. The Journal of the American Medical Association, 281, 517–523.

    Article  CAS  Google Scholar 

  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R. M., Stephens, G. M., et al. (2008). Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry, 80, 2939–2948.

    Article  CAS  PubMed  Google Scholar 

  • Winder, C. L., Gordon, S. V., Dale, J., Hewinson, R. G., & Goodacre, R. (2006). Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: Implications for genotype-phenotype links. Microbiology, 152, 2757–2765.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JWA, AV, YX, and RG would like to acknowledge CR-UK for current research funding. HR thanks The Saudi Ministry of higher education and King Saud University for funding. EC and RG are grateful to the EU Commonsense (http://www.fp7projectcommonsense.eu/) project (Grant 261809) financed by the European Commission under the 7th Framework Programme for Research and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Allwood.

Additional information

J. William Allwood and Haitham AlRabiah have contributed equally to this publication.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allwood, J.W., AlRabiah, H., Correa, E. et al. A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin challenged Escherichia coli . Metabolomics 11, 438–453 (2015). https://doi.org/10.1007/s11306-014-0674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0674-6

Keywords

Navigation