Skip to main content
Log in

Genetic mapping of a locus controlling the intergeneric hybridization barrier between apple and pear

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Hybridizations involving different species are often hindered because of incompatibility reactions. Although these reproductive barriers have been observed in many plant species, the underlying mechanisms remain to be comprehensively elucidated. In this study, we detected a hybridization barrier between apple (Malus × domestica) and pear (Pyrus spp.) belonging to different genera in the subtribe Malinae of the family Rosaceae. Pollination experiments revealed that Pyrus pyrifolia (Japanese pear) pollen is compatible with Malus pistils, whereas Pyrus communis (European pear) pollen is not. These results imply there is a distinct cross-(in)compatibility reaction occurring in Pyrus species. Based on the varying pollen tube behaviors among Pyrus species, genetic analysis was conducted to identify the genomic region responsible for the intergeneric barrier. Malus–Pyrus intergeneric hybrids were used to detect distorted segregation regions by combining genome sequencing and fine-scale genotyping data. We defined a single locus on chromosome 5, in which P. pyrifolia-derived alleles were exclusively inherited to the intergeneric hybrids from the Pyrus interspecific hybrid. Of the 235 genes in this genomic region, 80 exhibited a specific pollen-expression pattern, including genes involved in self-incompatibility reactions. These candidate genes are herein discussed regarding their possible functions related to reproductive isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data archiving statement

The datasets generated during the current study are available in the DDBJ SRA (Sequence Read Archive), under the BioProject number PRJDB8418.

References

  • Aguiar B, Vieira J, Cunha AE, Fonseca NA, Iezzoni A, Van Nocker S, Vieira CP (2015) Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS One 10:e0126138

    Article  Google Scholar 

  • Akagi T, Henry IM, Tao R, Comai L (2014) A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 346:646–650

    Article  CAS  Google Scholar 

  • Banno K, Hirano Y, Ishikawa H, Kakegawa M (2003) Breeding and characteristics of symmetric intergeneric hybrids between apple and pear. Acta Hortic 622:265–276

    Article  CAS  Google Scholar 

  • Bedinger PA, Chetelat RT, McClure B, Moyle LC, Rose JK, Stack SM, van der Knaap E, Baek YS, Lopez-Casado G, Covey PA, Kumar A, Li W, Nunez R, Cruz-Garcia F, Royer S (2011) Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex Plant Reprod 24:171–187

    Article  Google Scholar 

  • Bokszczanin K, Palucha A, Przybyla AA (2009) Description of a new trans-generic Skb-RNase allele in apple. Euphytica 166:83–94

    Article  CAS  Google Scholar 

  • Chetelat RT (2016) Overcoming sterility and unilateral incompatibility of Solanum lycopersicum × S. sitiens hybrids. Euphytica 207:319–330

    Article  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Ann Rev Plant Biol 59:547–572

    Article  CAS  Google Scholar 

  • Daccord N, Celton JM, Linsmith G et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genet 49:1099

    Article  CAS  Google Scholar 

  • De Franceschi P, Pierantoni L, Dondini L, Grandi M, Sansavini S, Sanzol J (2011) Evaluation of candidate F-box genes for the pollen S of gametophytic self-incompatibility in the Pyrinae (Rosaceae) on the basis of their phylogenomic context. Tree Genet Genomes 7:663–683

    Article  Google Scholar 

  • Fischer TC, Malnoy M, Hofmann T et al (2014) F1 hybrid of cultivated apple (Malus× domestica) and European pear (Pyrus communis) with fertile F2 offspring. Mol Breed 34:817–828

    Article  CAS  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Heng W, Wu J, Wu H, Cao Y, Nishio T, Zhang SL (2011) Recognition specificity of self-incompatibility in Pyrus and Malus. Mol Breed 28:549–557

    Article  CAS  Google Scholar 

  • Hua Z, Kao TH (2006) Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18:2531–2553

    Article  CAS  Google Scholar 

  • Inoue E, Sakuma F, Kasumi M, Hara H, Tsukihashi T (2003) Effect of high-temperature on suppression of the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai) and apple (Malus× domestica Borkh.). Scientia Hortic 98:385–396

    Article  Google Scholar 

  • Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S, Sasaki N, Higashiyama T (2011) Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann Bot 108:739–747

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  • Kimura T, Sawamura Y, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2003) Parentage analysis in pear cultivars characterized by SSR markers. J Japan Soc Hortic Sci 72:182–189

    Article  CAS  Google Scholar 

  • Lewis D, Crowe LK (1958) Unilateral interspecific incompatibility in flowering plants. Heredity 12:233–256

    Article  Google Scholar 

  • Li W, Chetelat RT (2010) A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330:1827

    Article  CAS  Google Scholar 

  • Li W, Chetelat RT (2014) The role of a pollen-expressed Cullin1 protein in gametophytic self-incompatibility in Solanum. Genetics 196:439–442

    Article  CAS  Google Scholar 

  • Li W, Chetelat RT (2015) Unilateral incompatibility gene ui1. 1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc Natl Acad Sci 112:4417–4422

    Article  CAS  Google Scholar 

  • Linsmith G, Rombauts S, Montanari S et al (2019) Pseudo-chromosome length genome assembly of a double haploid ‘Bartlett’ pear (Pyrus communis L.). doi. https://doi.org/10.1101/651778

  • Matsumoto D, Tao R (2016) Distinct self-recognition in the Prunus S-RNase-based gametophytic self-incompatibility system. Hortic J 85:289–305

    Article  CAS  Google Scholar 

  • Meng D, Gu Z, Yuan H, et al (2014) The microtubule cytoskeleton and pollen tube golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. Plant and Cell Physiol 55, 977-989

    Article  CAS  Google Scholar 

  • Montanari S, Brewer L, Lamberts R et al (2016) Genome mapping of postzygotic hybrid necrosis in an interspecific pear population. Hortic Res 3:15064

    Article  Google Scholar 

  • Morimoto T, Banno K (2015) Genetic and physical mapping of Co, a gene controlling the columnar trait of apple. Tree Genet Genomes 11:807

    Article  Google Scholar 

  • Morimoto T, Kitamura Y, Numaguchi K, Akagi T, Tao R (2019) Characterization of post-mating interspecific cross-compatibility in Prunus (Rosaceae). Sci Hortic 246:693–699

    Article  Google Scholar 

  • Moyle LC, Jewell CP, Kostyun JL (2014) Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. Curr Opin Plant Biol 18:16–23

    Article  Google Scholar 

  • Ono K, Akagi T, Morimoto T, Wünsch A, Tao R (2018) Genome re-sequencing of diverse sweet cherry (Prunus avium) individuals reveals a modifier gene mutation conferring pollen-part self-compatibility. Plant Cell Physiol 59:1265–1275

    Article  CAS  Google Scholar 

  • Potter D, Eriksson T, Evans RC et al (2007) Phylogeny and classification of Rosaceae. Plant System Evol 266:5–43

    Article  Google Scholar 

  • Qin X, Li W, Liu Y, Tan M, Ganal M, Chetelat RT (2018) A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. Plant J 93:417–430

    Article  CAS  Google Scholar 

  • Shimura I, Seike K, Shishikura T (1980) Intergeneic htbridization between Japanese pear, pyrus serotina Rehd. Var. culta Rehd, and apple, Malus pumila Mill. var. domestica Schneid. Japan J Breed 30, 170-180. (Japanese script with English abstract)

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  Google Scholar 

  • Takada Y, Murase K, Shimosato-Asano H et al (2017) Duplicated pollen–pistil recognition loci control intraspecific unilateral incompatibility in Brassica rapa. Nature Plants 3:17096

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tovar-Méndez A, Kumar A, Kondo K, Ashford A, Baek YS, Welch L, Bedinger PA, McClure BA (2014) Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. Plant J 77:727–736

    Article  Google Scholar 

  • Tovar-Méndez A, Lu L, McClure B (2017) HT proteins contribute to S-RNase-independent pollen rejection in Solanum. Plant J 89:718–729

    Article  Google Scholar 

  • Tsuruta M, Mukai Y (2015) Hybrid seedling inviability locus (HIs1) mapped on linkage group 4 of the Japanese flowering cherry, Cerasus× yedoensis ‘Somei-yoshino’. Tree Genet Genome 11:88

    Article  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl_2), W71-W74.

    Article  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, et al (2010) The genome of the domesticated apple (Malus× domestica Borkh.). Nature Genet 42, 833

  • Yaegaki H, Yamaguchi M, Haji T, Suesada Y, Miyake M, Kihara T, Suzuki K, Uchida M (2012) New Japanese apricot cultivar ‘Tsuyuakane’. Bull NARO Inst Fruit Tree Sci 13, 1-6 (Japanese script with English abstract)

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the valuable comments and suggestions provided by Dr. Fabrizio Costa regarding the manuscript. We also thank Ms. Rieko Ishida and Mr. Yutaro Osako for maintaining plants during experiments.

Funding

This work was supported by the Overseas Research Fellowship provided by the Japan Society for the Promotion of Science (JSPS) to T.M. (201860070 and 19K15834). This study received financial assistance from the authors Drs Ryutaro Tao and Takashi Akagi [JSPS Grants-in-Aids for Scientific Research (A) (No. 15H02431) to RT and for Challenging Exploratory Research (No. 17K19265) to TA].

Author information

Authors and Affiliations

Authors

Contributions

T.M. conceived and designed the study. T.M., M.I., and K.B. conducted the experiments. T.M. analyzed the data. T.M. and A.I. drafted the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Takuya Morimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by M. Troggio

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, T., Inaoka, M., Banno, K. et al. Genetic mapping of a locus controlling the intergeneric hybridization barrier between apple and pear. Tree Genetics & Genomes 16, 5 (2020). https://doi.org/10.1007/s11295-019-1397-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1397-7

Keywords

Navigation