Skip to main content
Log in

Securing Underwater Sensor Networks Against Routing Attacks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the advances in technology, there has been an increasing interest both from research and industrial communities in the use of Underwater Wireless Sensor Networks (UWSNs). These networks are vulnerable to a wide class of security attacks. In fact, UWSNs are particularly more susceptible to attacks than their ground-base counterparts due to the challenges imposed by their deployment environment. This paper proposes a distributed approach to detect and mitigate routing attacks in such networks. An analytical model is provided to capture the interactions between various contributing parameters. Our simulation experiments validate the correctness and efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akyildiz, I., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  3. Ateniese, G., Capossele, A., Gjanci, P., Petrioli, C., & Spaccini, D. (2015). Secfun: Security framework for underwater acoustic sensor networks. In: OCEANS 2015-Genova (pp. 1–9). IEEE

  4. Ayaz, M., Baig, I., Abdullah, A., & Faye, I. (2011). A survey on routing techniques in underwater wireless sensor networks. Journal of Network and Computer Applications, 34(6), 1908–1927.

    Article  Google Scholar 

  5. Boulis, A. (2012). Castalia: A simulator for wireless sensor networks and body area networks. http://castalia.npc.nicta.com.au/. Accessed October 29, 2012.

  6. Capossele, A., De Cicco, G., & Petrioli, C. (2015). R-carp: A reputation based channel aware routing protocol for underwater acoustic sensor networks. In Proceedings of the 10th ACM international conference on underwater networks and systems (WUWNET’15) (pp. 492–499). ACM.

  7. Casari, P., & Zorzi, M. (2011). Protocol design issues in underwater acoustic networks. Computer Communications, 34(17), 2013–2025.

    Article  Google Scholar 

  8. Chirdchoo, N., Soh, W., & Chua, K. (2008). MU-Sync: A time synchronization protocol for underwater mobile networks. In Proceedings of the international workshop on underwater networks (WUWNet’08) (pp. 35–42). ACM.

  9. Chiwewe, T., & Hancke, G. (2012). A distributed topology control technique for low interference and energy efficiency in wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(1), 11–19.

    Article  Google Scholar 

  10. Climent, S., Sanchez, A., Capella, J. V., Meratnia, N., & Serrano, J. J. (2014). Underwater acoustic wireless sensor networks: Advances and future trends in physical, mac and routing layers. Sensors, 14(1), 795–833.

    Article  Google Scholar 

  11. Conti, M. (2015). Secure wireless sensor networks. Berlin: Springer.

    Book  Google Scholar 

  12. Dini, G., & Lo Duca, A. (2012). A secure communication suite for underwater acoustic sensor networks. Sensors, 12(11), 15133–15158.

    Article  Google Scholar 

  13. Domingo, M. (2011). Securing underwater wireless communication networks. Wireless Communications, 18(1), 22–28.

    Article  Google Scholar 

  14. Felamban, M., Shihada, B., & Jamshaid, K. (2013). Optimal node placement in underwater wireless sensor networks. In Proceedings of the 27th international conference on advanced information networking and applications (AINA’13) (pp. 492–499). IEEE.

  15. Han, G., Jiang, J., Sun, N., & Shu, L. (2015). Secure communication for underwater acoustic sensor networks. IEEE Communications Magazine, 53(8), 54–60.

    Article  Google Scholar 

  16. Heidemann, J., Ye, W., Wills, J., Syed, A., & Li, Y. (2006). Research challenges and applications for underwater sensor networking. In Proceedings of the wireless communications and networking conference (WCNC’06) (Vol. 1, pp. 228–235). IEEE.

  17. Hu, L., & Evans, D. (2004). Using directional antennas to prevent wormhole attacks. In Proceedings of the network and distributed system security symposium (NDSS’04). IEEE.

  18. Hu, Y., Perrig, A., & Johnson, D. (2003). Packet leashes: A defense against wormhole attacks in wireless networks. In Proceedings of the international conference on computer communications (INFOCOM’03) (pp. 1976–1986). IEEE.

  19. Integrated Ocean Observing System. http://www.ioos.gov. Accessed November 30, 2012.

  20. Khalil, I. (2010). ELMO: Energy aware local monitoring in sensor networks. IEEE Transactions on Dependable and Secure Computing, 99, 1–10.

    Google Scholar 

  21. Khalil, I., Awad, M., & Khreishah, A. (2012). CTAC: Control traffic tunneling attacks countermeasures in mobile wireless networks. Computer Networks, 56(14), 3300–3317.

    Article  Google Scholar 

  22. Khalil, I., Bagchi, S., & Shroff, N. (2007). LITEWORP: Detection and isolation of the wormhole attack in static multihop wireless networks. Computer Networks, 51(13), 3750–3772.

    Article  MATH  Google Scholar 

  23. Khalil, I., Bagchi, S., & Shroff, N. (2007). SLAM: Sleep-wake aware local monitoring in sensor networks. In Proceedings of the annual IEEE/IFIP international conference on dependable systems and networks (DSN’07) (pp. 565–574). IEEE.

  24. Krontiris, I., Dimitriou, T., Giannetsos, T., & Mpasoukos, M. (2008). Intrusion detection of sinkhole attacks in wireless sensor networks. In Algorithmic aspects of wireless sensor networks (pp. 150–161).

  25. Krontiris, I., Giannetsos, T., & Dimitriou, T. (2008). Launching a sinkhole attack in wireless sensor networks: The intruder side. In Proceedings of IEEE international conference on wireless and mobile computing (WiMob’08) (pp. 526–531).

  26. Lal, C., Petroccia, R., Conti, M., & Alves, J. (2016). Secure underwater acoustic networks: Current and future research directions. In 2016 IEEE third underwater communications and networking conference (UComms) (pp. 1–5). IEEE.

  27. Lazos, L., Poovendran, R., Meadows, C., Syverson, P., & Chang, L. (2005). Preventing wormhole attacks on wireless ad hoc networks: A graph theoretic approach. In Proceedings of the wireless communications and networking conference (WCNC’05) (Vol. 2, pp. 1193–1199). IEEE.

  28. Lee, U., Wang, P., Noh, Y., Vieira, L. F. M., Gerla, M., & Cui, J. H. (2010). Pressure routing for underwater sensor networks. In INFOCOM (pp. 1676–1684).

  29. Li, Z., Guo, Z., Hong, F., & Hong, L. (2013). E2DTS: An energy efficiency distributed time synchronization algorithm for underwater acoustic mobile sensor networks. Ad Hoc Networks, 11(4), 1372–1380.

    Article  Google Scholar 

  30. Liu, C. X., Liu, Y., Zhang, Z. J., & Cheng, Z. Y. (2012). High energy-efficient and privacy-preserving secure data aggregation for wireless sensor networks. International Journal of Communication Systems, 26(3), 380–394.

    Article  Google Scholar 

  31. Liu, J., Zhou, Z., Peng, Z., & Cui, J. (2010). Mobi-sync: Efficient time synchronization for mobile underwater sensor networks. In Proceedings of the global telecommunications conference (GLOBECOM’10) (pp. 1–5). IEEE.

  32. Melodia, T., Kulhandjian, H., Kuo, L. C., & Demirors, E. (2013). Advances in underwater acoustic networking. Mobile Ad Hoc Networking: Cutting Edge Directions 804–852.

  33. Ngai, E., Liu, J., & Lyu, M. (2007). An efficient intruder detection algorithm against sinkhole attacks in wireless sensor networks. Computer Communications, 30(11), 2353–2364.

    Article  Google Scholar 

  34. Pompili, D., Melodia, T., & Akyildiz, I. (2009). A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(4), 1899–1909.

    Article  Google Scholar 

  35. Roy, S., Singh, S., Choudhury, S., & Debnath, N. (2008). Countering sinkhole and black hole attacks on sensor networks using dynamic trust management. In Proceedings of the IEEE symposium on computers and communications (ISCC’08) (pp. 537–542).

  36. Shafiei, H., Khonsari, A., Derakhshi, H., & Mousavi, P. (2014). Detection and mitigation of sinkhole attacks in wireless sensor networks. Journal of Computer and System Sciences, 80(3), 644–653.

    Article  MATH  Google Scholar 

  37. Shin, S., Kwon, T., Jo, G., Park, Y., & Rhy, H. (2010). An experimental study of hierarchical intrusion detection for wireless industrial sensor networks. IEEE Transactions on Industrial Informatics, 6(4), 744–757.

    Article  Google Scholar 

  38. Srujana, B. S., Mathews, P., Harigovindan, V., et al. (2015). Multi-source energy harvesting system for underwater wireless sensor networks. Procedia Computer Science, 46, 1041–1048.

    Article  Google Scholar 

  39. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 34–43.

    Article  Google Scholar 

  40. Varga, A. et al. (2001). The OMNeT++ discrete event simulation system. In Proceedings of the European simulation multiconference (Vol. 9).

  41. Venkatesan, N., Agarwal, T., Lalitha, V., & Vijay Kumar, P. (2011). Distributed intrusion detection in the presence of correlated sensor readings: Signal-space and communication-complexity view-point. Ad Hoc Networks, 9(6), 1015–1027.

    Article  Google Scholar 

  42. Wahid, A., Lee, S., & Kim, D. (2012). A reliable and energy-efficient routing protocol for underwater wireless sensor networks. International Journal of Communication Systems, 29(1), 1–10.

    Google Scholar 

  43. Wang, W., Kong, J., Bhargava, B., & Gerla, M. (2008). Visualisation of wormholes in underwater sensor networks: A distributed approach. International Journal of Security and Networks, 3(1), 10–23.

    Article  Google Scholar 

  44. Xenakis, C., Panos, C., & Stavrakakis, I. (2011). A comparative evaluation of intrusion detection architectures for mobile ad hoc networks. Computers & Security, 30(1), 63–80.

    Article  Google Scholar 

  45. Yuksel, K., Kaps, J., & Sunar, B. (2004). Universal hash functions for emerging ultra-low-power networks. In Proceedings of the communications networks and distributed systems modeling and simulation conference (CNDS’04).

  46. Zhang, R., & Zhang, Y. (2010). Wormhole-resilient secure neighbor discovery in underwater acoustic networks. In Proceedings of the IEEE international conference on computer communications (INFOCOM’10) (pp. 1–9)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid H. S. Javadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dargahi, T., Javadi, H.H.S. & Shafiei, H. Securing Underwater Sensor Networks Against Routing Attacks. Wireless Pers Commun 96, 2585–2602 (2017). https://doi.org/10.1007/s11277-017-4313-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4313-1

Keywords

Navigation