Skip to main content
Log in

Techniques employed in distributed cognitive radio networks: a survey on routing intelligence

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In order to meet the growing needs for wireless communication in dynamic and diverse circumstances, Cognitive Radio Networks (CRNs) have evolved as a transformational model. The important area of intelligent routing in CRNs is examined in this review, along with the potential, problems, and developments that have shaped this emerging discipline. A close study is done on spectrum-aware routing, machine learning-based methods, game theory-inspired strategies, and bio-inspired processes to show how they help solve problems like changing spectrum access, security issues, and the need to efficiently distribute resources. The ever-changing nature of radio settings presents both possibilities and difficulties for innovation in the fields of signal processing, machine learning, and protocol design. The main conclusions of the study highlight how important intelligent routing is to changing how CRNs operate in the future. In the face of dynamic situations, it offers improved resilience, adaptation, and spectrum efficiency. Security innovations, human-centered strategies via intelligent interfaces, and fusion with cutting-edge technology like blockchain and machine learning all reveal novel perspectives on CRNs. With far-reaching ramifications, intelligent routing is positioned as a keystone for reimagining the potential of wireless communication. Future navigation offers a paradigm shift as cutting-edge technology and intelligent routing algorithms combine, opening up previously unimaginable possibilities in the constantly changing field of wireless communication. This study acts as a compass, pointing practitioners and academics in the direction of intelligent routing’s revolutionary potential in the development of CRNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Soheil Shamaee M, Shiri ME, Sabaei M (2018) A reinforcement learning based routing in cognitive radio networks for primary users with multi-stage periodicity. Wireless Pers Commun 101(1):465–490. https://doi.org/10.1007/s11277-018-5700-y

    Article  Google Scholar 

  2. Wang W, Kwasinski A, Niyato D, Han Z (2016) A survey on applications of model-free strategy learning in cognitive wireless networks. IEEE Commun Surv Tutorials 18(3):1717–1757. https://doi.org/10.1109/COMST.2016.2539923

    Article  Google Scholar 

  3. Zheng C, Sicker DC (2013) A survey on biologically inspired algorithms for computer networking. IEEE Commun Surv Tutorials 15(3):1160–1191. https://doi.org/10.1109/SURV.2013.010413.00175

    Article  Google Scholar 

  4. Ahmad IS, Bakar AA, Yaakub MR, Muhammad SH (2020) A survey on machine learning techniques in movie revenue prediction. SN Comput Sci 1(4):235. https://doi.org/10.1007/s42979-020-00249-1

    Article  Google Scholar 

  5. Das D, Das S (2015) A survey on spectrum occupancy measurement for cognitive radio. Wireless Pers Commun 85(4):2581–2598. https://doi.org/10.1007/s11277-015-2921-1

    Article  Google Scholar 

  6. Patil VM, Patil SR (2016) A survey on spectrum sensing algorithms for cognitive radio. 2016 International Conference on Advances in Human Machine Interaction, HMI 2016, 11, pp 149–153. https://doi.org/10.1109/HMI.2016.7449196

  7. Fu F, Van Der Schaar M (2010) A systematic framework for dynamically optimizing multi-user wireless video transmission. IEEE J Sel Areas Commun 28(3):308–320. https://doi.org/10.1109/JSAC.2010.100403

    Article  Google Scholar 

  8. Priyadarshi R, Vikram R (2023) A triangle-based localization scheme in wireless multimedia sensor network. Wireless Pers Commun 133(1):525–546. https://doi.org/10.1007/s11277-023-10777-7

    Article  Google Scholar 

  9. Palomar DP, Chiang M (2006) A tutorial on decomposition methods for network utility maximization. IEEE J Sel Areas Commun 24(8):1439–1451. https://doi.org/10.1109/JSAC.2006.879350

    Article  Google Scholar 

  10. Korilis YA, Lazar AA, Orda A (1997) Achieving network optima using Stackelberg routing strategies. IEEE/ACM Trans Networking 5(1):161–173. https://doi.org/10.1109/90.554730

    Article  Google Scholar 

  11. Nicopolitidis P, Papadimitriou GI, Pomportsis AS, Sarigiannidis P, Obaidat MS (2011) Adaptive wireless networks using learning automata. IEEE Wirel Commun 18(2):75–81. https://doi.org/10.1109/MWC.2011.5751299

    Article  Google Scholar 

  12. Sharma RK, Rawat DB (2015) Advances on security threats and countermeasures for cognitive radio networks: a survey. IEEE Commun Surv Tutorials 17(2):1023–1043. https://doi.org/10.1109/COMST.2014.2380998

    Article  Google Scholar 

  13. Ali A, Hamouda W (2017) Advances on spectrum sensing for cognitive radio networks: theory and applications. IEEE Commun Surv Tutorials 19(2):1277–1304. https://doi.org/10.1109/COMST.2016.2631080

    Article  Google Scholar 

  14. Priyadarshi R, Kumar RR (2021) An energy-efficient leach routing protocol for wireless sensor networks. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 673, pp. 423–430). Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_35

  15. Yin F, Lin Z, Kong Q, Xu Y, Li D, Theodoridis S,…, Cui SR (2020) FedLoc:Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing. IEEE Open J Signal Process 1:187–215. https://doi.org/10.1109/OJSP.2020.3036276

  16. Yin F, Fritsche C, Jin D, Gustafsson F, Zoubir AM (2015) Cooperative localization in WSNs using Gaussian mixture modeling: distributed ECM algorithms. IEEE Trans Signal Process 63(6):1448–1463. https://doi.org/10.1109/TSP.2015.2394300

    Article  Google Scholar 

  17. Chen Z, Gao L (2023) CURSOR: Configuration Update Synthesis Using Order Rules. Paper presented at the IEEE INFOCOM 2023 - IEEE Conference on Computer Communications. https://doi.org/10.1109/INFOCOM53939.2023.10228930

  18. Xu X, Liu W, Yu L (2022) Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf Sci 608:375–391. https://doi.org/10.1016/j.ins.2022.06.073

    Article  Google Scholar 

  19. Sun G, Xu Z, Yu H, Chen X, Chang V,…, Vasilakos AV (2020) Low-latency and resource-efficient service function chaining orchestration in network function virtualization. IEEE Internet Things J 7(7):5760–5772. https://doi.org/10.1109/JIOT.2019.2937110

  20. Akbari Torkestani J, Meybodi MR (2010) An intelligent backbone formation algorithm for wireless ad hoc networks based on distributed learning automata. Comput Netw 54(5):826–843. https://doi.org/10.1016/j.comnet.2009.10.007

    Article  Google Scholar 

  21. Rabiner LR, Juang BH (1986) An introduction to hidden Markov models. IEEE ASSP Mag 3(1):4–16. https://doi.org/10.1109/MASSP.1986.1165342

    Article  Google Scholar 

  22. Ahmad AJ, Hassan SD, Priyadarshi R, Nath V (2023) Analysis on Image Compression for Multimedia Communication Using Hybrid of DWT and DCT. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 887, pp. 667–672). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_54

  23. Clancy C, Hecker J, Stuntebeck E, O’Shea T (2007) Applications of machine learning to cognitive radio networks. IEEE Wirel Commun 14(4):47–52. https://doi.org/10.1109/MWC.2007.4300983

    Article  Google Scholar 

  24. Busch C, Kannan R, Vasilakos AV (2012) Approximating congestion + dilation in networks via quality of routing games. IEEE Trans Comput 61(9):1270–1283. https://doi.org/10.1109/TC.2011.145

    Article  MathSciNet  Google Scholar 

  25. Priyadarshi R, Gupta B (2021) Area coverage optimization in three-dimensional wireless sensor network. Wireless Pers Commun 117(2):843–865. https://doi.org/10.1007/s11277-020-07899-7

    Article  Google Scholar 

  26. Qadir J (2016) Artificial intelligence based cognitive routing for cognitive radio networks. Artif Intell Rev 45(1):25–96. https://doi.org/10.1007/s10462-015-9438-6

    Article  Google Scholar 

  27. Gai Y, Krishnamachari B, Jain R (2012) Combinatorial network optimization with unknown variables: multi-armed bandits with linear rewards and individual observations. IEEE/ACM Trans Netw 20(5):1466–1478. https://doi.org/10.1109/TNET.2011.2181864

    Article  Google Scholar 

  28. Purian FK, Farokhi F, Nadooshan RS (2013) Comparing the performance of genetic algorithm and ant colony optimization algorithm for Mobile Robot path planning in the dynamic environments with different complexities. J Acad Appl Stud 3(2):29–44

    Google Scholar 

  29. Papadimitriou CH, Tsitsiklis JN (1999) Complexity of optimal queuing network control. Math Oper Res 24(2):293–305. https://doi.org/10.1287/moor.24.2.293

    Article  MathSciNet  Google Scholar 

  30. Macaluso I, Finn D, Ozgul B, DaSilva LA (2013) Complexity of spectrum activity and benefits of learning for dynamic channel selection. IEEE J Sel Areas Commun 31(11):2237–2248

  31. Macaluso I, Finn D, Ozgul B, Dasilva LA (2013) Complexity of spectrum activity and benefits of reinforcement learning for dynamic channel selection. IEEE J Sel Areas Commun 31(11):2237–2248. https://doi.org/10.1109/JSAC.2013.131115

    Article  Google Scholar 

  32. Byun SS, Balashingham I, Vasilakos AV, Lee HN (2014) Computation of an equilibrium in spectrum markets for cognitive radio networks. IEEE Trans Comput 63(2):304–316. https://doi.org/10.1109/TC.2012.211

    Article  MathSciNet  Google Scholar 

  33. Sekercioğlu YA, Pitsillides A, Vasilakos A (2001) Computational intelligence in management of ATM networks. Soft Comput 5(4):257–263. https://doi.org/10.1007/s005000100099

    Article  Google Scholar 

  34. Verdu S (1989) Control and optimization methods in communication network problems. IEEE Trans Autom Control 34(9):930–942. https://doi.org/10.1109/9.35806

    Article  MathSciNet  Google Scholar 

  35. Wang P, Zhang J, Zhang X, Yan Z, Evans BG, Wang W (2020) Convergence of satellite and terrestrial networks: a comprehensive survey. IEEE Access 8:5550–5588. https://doi.org/10.1109/ACCESS.2019.2963223

    Article  Google Scholar 

  36. Akyildiz IF, Lo BF, Balakrishnan R (2011) Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun 4(1):40–62. https://doi.org/10.1016/j.phycom.2010.12.003

    Article  Google Scholar 

  37. Dai M, Luo L, Ren J, Yu H, Sun G (2022) PSACCF: prioritized online slice admission control considering fairness in 5G/B5G networks. IEEE Trans Netw Sci Eng 9(6):4101–4114. https://doi.org/10.1109/TNSE.2022.3195862

    Article  Google Scholar 

  38. Sun G, Xu Z, Yu H, Chang V (2021) Dynamic network function provisioning to enable network in box for industrial applications. IEEE Trans Industr Inf 17(10):7155–7164. https://doi.org/10.1109/TII.2020.3042872

    Article  Google Scholar 

  39. Ma X, Dong Z, Quan W, Dong Y, Tan Y (2023) Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from built-in sensors: optimal sensor placement and identification algorithm. Mech Syst Signal Process 187:109930. https://doi.org/10.1016/j.ymssp.2022.109930

    Article  Google Scholar 

  40. Qu J, Mao B, Li Z, Xu Y, Zhou K, Cao X,…, Wang X (2023) Recent progress in advanced tactile sensing technologies for soft grippers. Adv Funct Mater 33(41):2306249. https://doi.org/10.1002/adfm.202306249

  41. Ma B, Liu Z, Dang Q, Zhao W, Wang J, Cheng Y,…, Yuan Z (2023) Deep reinforcement learning of UAV tracking control under wind disturbances environments. IEEE Transactions on Instrumentation and Measurement, pp 72. https://doi.org/10.1109/TIM.2023.3265741

  42. Zhang J, Ren J, Cui Y, Fu D, Cong J (2024) Multi-USV task planning method based on improved deep reinforcement learning. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2024.3363044

    Article  Google Scholar 

  43. Priyadarshi R, Gupta B (2020) Coverage area enhancement in wireless sensor network. Microsyst Technol 26(5):1417–1426. https://doi.org/10.1007/s00542-019-04674-y

    Article  Google Scholar 

  44. Akyildiz IF, Lee WY, Chowdhury KR (2009) CRAHNs: cognitive radio ad hoc networks. Ad Hoc Netw 7(5):810–836. https://doi.org/10.1016/j.adhoc.2009.01.001

    Article  Google Scholar 

  45. Ding L, Melodia T, Batalama SN, Matyjas JD, Medley MJ (2010) Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Trans Veh Technol 59(4):1969–1979. https://doi.org/10.1109/TVT.2010.2045403

    Article  Google Scholar 

  46. Chowdhury KR, Akyildiz IF (2011) CRP: a routing protocol for cognitive radio ad hoc networks. IEEE J Sel Areas Commun 29(4):794–804. https://doi.org/10.1109/JSAC.2011.110411

    Article  Google Scholar 

  47. Zhao Q, Tong L, Swami A, Chen Y (2007) Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework. IEEE J Sel Areas Commun 25(3):589–599. https://doi.org/10.1109/JSAC.2007.070409

    Article  Google Scholar 

  48. Xu Y, Anpalagan A, Wu Q, Shen L, Gao Z, Wang J (2013) Decision-theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Commun Surv Tutorials 15(4):1689–1713. https://doi.org/10.1109/SURV.2013.030713.00189

    Article  Google Scholar 

  49. Priyadarshi R, Gupta B, Anurag A (2020) Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J Supercomputing 76(9):7333–7373. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  50. Pandey A, Kumar D, Priyadarshi R, Nath V (2023) Development of Smart Village for Better Lifestyle of Farmers by Crop and Health Monitoring System. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 887, pp. 689–694). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_57

  51. Zeng Y, Xiang K, Li D, Vasilakos AV (2013) Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Netw 19(2):161–173. https://doi.org/10.1007/s11276-012-0457-9

    Article  Google Scholar 

  52. Misra S, Oommen BJ (2005) Dynamic algorithms for the shortest path routing problem: learning automata-based solutions. IEEE Trans Syst Man Cybern Part B: Cybern 35(6):1179–1192. https://doi.org/10.1109/TSMCB.2005.850180

    Article  Google Scholar 

  53. Geirhofer S, Tong L, Sadler BM (2007) Dynamic spectrum access in the time domain: modeling and exploiting white space. IEEE Commun Mag 45(5):66–72. https://doi.org/10.1109/MCOM.2007.358851

    Article  Google Scholar 

  54. Maharjan S, Zhang Y, Gjessing S (2011) Economic approaches for cognitive radio networks: a survey. Wireless Pers Commun 57(1):33–51. https://doi.org/10.1007/s11277-010-0005-9

    Article  Google Scholar 

  55. Wang J, Ghosh M, Challapali K (2011) Emerging cognitive radio applications: a survey. IEEE Commun Mag 49(3):74–81. https://doi.org/10.1109/MCOM.2011.5723803

    Article  Google Scholar 

  56. Priyadarshi R, Singh A, Agarwal D, Verma UC, Singh A (2023) Emerging Smart Manufactory: Industry 4.0 and Manufacturing in India: The Next Wave. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (vol 887, pp 353–363). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_32

  57. Wellens M, Riihijärvi J, Mähönen P (2009) Empirical time and frequency domain models of spectrum use. Phys Commun 2(1–2):10–32. https://doi.org/10.1016/j.phycom.2009.03.001

    Article  Google Scholar 

  58. Sammut C, Webb GI (2010) Encyclopedia of machine learning. Encyclopedia of machine learning. Springer. https://doi.org/10.1007/978-0-387-30164-8

  59. Di Felice M, Chowdhury KR, Kim W, Kassler A, Bononi L (2011) End-to-end protocols for cognitive radio Ad Hoc networks: an evaluation study. Perform Evaluation 68(9):859–875. https://doi.org/10.1016/j.peva.2010.11.005

    Article  Google Scholar 

  60. Yin Y, Guo Y, Su Q, Wang Z (2022) Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning. Drones 6(8):215. https://doi.org/10.3390/drones6080215

    Article  Google Scholar 

  61. Fang Z, Wang J, Liang J, Yan Y, Pi D, Zhang H,…, Yin G (2024). Authority allocation strategy for shared steering control considering human-machine mutual trust level. IEEE Trans Intell Veh 9(1):2002–2015. https://doi.org/10.1109/TIV.2023.3300152

  62. Li Q, Lin H, Tan X, Du S (2020) H ∞ consensus for multiagent-based supply chain systems under switching topology and uncertain demands. IEEE Trans Syst Man Cybernetics: Syst 50(12):4905–4918. https://doi.org/10.1109/TSMC.2018.2884510

    Article  Google Scholar 

  63. Cai L, Yan S, Ouyang C, Zhang T, Zhu J, Chen L,…, Liu H (2023) Muscle synergies in joystick manipulation. Front Physiol 14. https://doi.org/10.3389/fphys.2023.1282295

  64. Li X, Sun Y (2021) Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Comput Appl 33(14):8227–8235. https://doi.org/10.1007/s00521-020-04958-9

    Article  Google Scholar 

  65. Xie Y, Wang X, Shen Z, Sheng Y, Wu G (2023) A two-stage estimation of distribution algorithm with heuristics for energy-aware cloud workflow scheduling. IEEE Trans Serv Comput 16(6):4183–4197. https://doi.org/10.1109/TSC.2023.3311785

    Article  Google Scholar 

  66. Li K, Ji L, Yang S, Li H, Liao X (2022) Couple-group consensus of cooperative–competitive heterogeneous multiagent systems: a fully distributed event-triggered and pinning control method. IEEE Trans Cybernetics 52(6):4907–4915. https://doi.org/10.1109/TCYB.2020.3024551

    Article  Google Scholar 

  67. Priyadarshi R, Rawat P, Nath V (2019) Energy dependent cluster formation in heterogeneous wireless sensor network. Microsyst Technol 25(6):2313–2321. https://doi.org/10.1007/s00542-018-4116-7

    Article  Google Scholar 

  68. Priyadarshi R, Soni SK, Nath V (2018) Energy efficient cluster head formation in wireless sensor network. Microsyst Technol 24(12):4775–4784. https://doi.org/10.1007/s00542-018-3873-7

    Article  Google Scholar 

  69. Randheer, Soni SK, Kumar S, Priyadarshi R (2020) Energy-Aware clustering in Wireless Sensor Networks BT - Nanoelectronics, Circuits and Communication systems. In: Nath V, Mandal JK (eds) Springer Singapore, pp 453–461

  70. Rawat P, Chauhan S, Priyadarshi R (2020) Energy-efficient clusterhead selection scheme in heterogeneous wireless sensor network. J Circuits Syst Computers 29(13):2050204. https://doi.org/10.1142/S0218126620502047

    Article  Google Scholar 

  71. Meshkati F, Poor HV, Schwartz SC (2007) Energy-efficient resource allocation in wireless networks. IEEE Signal Process Mag 24(3):58–68. https://doi.org/10.1109/MSP.2007.361602

    Article  Google Scholar 

  72. Priyadarshi R (2024) Energy-efficient routing in wireless sensor networks: a meta-heuristic and artificial intelligence-based approach: a comprehensive review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10039-6

    Article  Google Scholar 

  73. Adamopoulou E, Demestichas K, Demestichas P, Theologou M (2008) Enhancing cognitive radio systems with robust reasoning. Int J Commun Syst 21(3):311–330. https://doi.org/10.1002/dac.898

    Article  Google Scholar 

  74. Leyton-Brown K, Shoham Y (2008) Essentials of game theory: a concise multidisciplinary introduction. Synthesis Lectures Artif Intell Mach Learn 2(1):1–88. https://doi.org/10.2200/s00108ed1v01y200802aim003

    Article  Google Scholar 

  75. Crepinsek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM-CSUR 45(3) https://doi.org/10.1145/2480741.2480752

  76. Priyadarshi R (2024) Exploring machine learning solutions for overcoming challenges in IoT-based wireless sensor network routing: a comprehensive review. Wireless Netw. https://doi.org/10.1007/s11276-024-03697-2

    Article  Google Scholar 

  77. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2–3):235–256. https://doi.org/10.1023/A:1013689704352

    Article  Google Scholar 

  78. Sateesh VA, Dutta I, Priyadarshi R, Nath V (2021) Fractional frequency reuse scheme for noise-limited cellular networks BT - Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. In: Nath V, Mandal JK (eds). Springer Singapore, pp. 995–1004

  79. Wang B, Wu Y, Liu KJR (2010) Game theory for cognitive radio networks: an overview. Comput Netw 54(14):2537–2561. https://doi.org/10.1016/j.comnet.2010.04.004

    Article  Google Scholar 

  80. Pavlidou FN, Koltsidas G (2008) Game theory for routing modeling in communication networks - a survey. J Commun Netw 10(3):268–286. https://doi.org/10.1109/JCN.2008.6388348

    Article  Google Scholar 

  81. MacKenzie AB, Dasilva LA (2005) Game theory for wireless engineers. Synthesis Lectures Commun 1:1–86. https://doi.org/10.2200/S00014ED1V01Y200508COM001

    Article  Google Scholar 

  82. Zorzi M, Rao RR (2003) Geographic random forwarding (GeRaF) for ad hoc and sensor networks: multihop performance. IEEE Trans Mob Comput 2(4):337–348. https://doi.org/10.1109/TMC.2003.1255648

    Article  Google Scholar 

  83. Jain R, Puri A, Sengupta R (2001) Geographical routing using partial information for wireless ad hoc networks. IEEE Pers Commun 8(1):48–57. https://doi.org/10.1109/98.904899

    Article  Google Scholar 

  84. Yu J, Dong X, Li Q, Lü J, Ren Z (2022) Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems. IEEE Transactions on Circuits and Systems I: Regular Papers 69(6):2567–2578. https://doi.org/10.1109/TCSI.2022.3151464

    Article  Google Scholar 

  85. Liu D, Cao Z, Jiang H, Zhou S, Xiao Z,…, Zeng F (2022) Concurrent low-power listening: a new design paradigm for duty-cycling communication. ACM Trans Sen Netw 19(1). https://doi.org/10.1145/3517013

  86. Dai X, Xiao Z, Jiang H, Alazab M, Lui JCS, Dustdar S,…, Liu J (2023)Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things. IEEE Trans Ind Inform 19(1):480–490. https://doi.org/10.1109/TII.2022.3158974

  87. Jiang H, Xiao Z, Li Z, Xu J, Zeng F,…, Wang D (2022) An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Trans Mob Comput 21(1):31–43. https://doi.org/10.1109/TMC.2020.3005908

  88. Jiang H, Chen S, Xiao Z, Hu J, Liu J,…, Dustdar S (2023) Pa-Count: passenger counting in vehicles using Wi-Fi signals. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2023.3263229

  89. Min H, Li Y, Wu X, Wang W, Chen L,…, Zhao X (2023) A measurement scheduling method for multi-vehicle cooperative localization considering state correlation. Veh Commun. https://doi.org/10.1016/j.vehcom.2023.100682

  90. Ganesan D, Govindan R, Shenker S, Estrin D (2001) Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mob Comput Commun Rev 5(4):11–25. https://doi.org/10.1145/509506.509514

    Article  Google Scholar 

  91. Stevenson CR, Chouinard G, Lei Z, Hu W, Shellhammer SJ, Caldwell W (2009) IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Commun Mag 47(1):130–138. https://doi.org/10.1109/MCOM.2009.4752688

    Article  Google Scholar 

  92. Qiu Y, Ma L, Priyadarshi R (2024) Deep learning challenges and prospects in wireless sensor network deployment. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-024-10079-6

    Article  Google Scholar 

  93. Wellens M, Mähönen P (2010) Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model. Mob Networks Appl 15(3):461–474. https://doi.org/10.1007/s11036-009-0199-9

    Article  Google Scholar 

  94. Yang Z, Cheng G, Liu W, Yuan W, Cheng W (2008) Local coordination based routing and spectrum assignment in multi-hop cognitive radio networks. Mob Networks Appl 13(1–2):67–81. https://doi.org/10.1007/s11036-008-0025-9

    Article  Google Scholar 

  95. Qiu L, Yang R, Zhang Y, Shenker S (2006) On selfish routing in internet-like environments. IEEE/ACM Trans Networking 14(4):725–738. https://doi.org/10.1109/TNET.2006.880179

    Article  Google Scholar 

  96. Rezek I, Leslie DS, Reece S, Roberts SJ, Rogers A, Dash RK, Jennings NR (2008) On similarities between inference in game theory and machine learning. J Artif Intell Res 33:259–283. https://doi.org/10.1613/jair.2523

    Article  MathSciNet  Google Scholar 

  97. Duarte PBF, Md. Fadlullah Z, Vasilakos AV, Kato N (2012) On the partially overlapped channel assignment on wireless mesh network backbone: a game theoretic approach. IEEE J Sel Areas Commun 30(1):119–127. https://doi.org/10.1109/JSAC.2012.120111

    Article  Google Scholar 

  98. Sengupta S, Subbalakshmi K (2013) Open research issues in multi-hop cognitive radio networks. IEEE Commun Mag 51(4):168–176. https://doi.org/10.1109/MCOM.2013.6495776

    Article  Google Scholar 

  99. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow. ACM SIGCOMM Comput Communication Rev 38(2):69–74. https://doi.org/10.1145/1355734.1355746

    Article  Google Scholar 

  100. Caleffi M, Akyildiz IF, Paura L (2012) OPERA: optimal routing metric for cognitive radio ad hoc networks. IEEE Trans Wireless Commun 11(8):2884–2894. https://doi.org/10.1109/TWC.2012.061912.111479

    Article  Google Scholar 

  101. Choi KW, Hossain E (2011) Opportunistic access to spectrum holes between packet bursts: a learning-based approach. IEEE Trans Wireless Commun 10(8):2497–2509. https://doi.org/10.1109/TWC.2011.060711.100154

    Article  Google Scholar 

  102. Lee WY, Akyildiz IF (2008) Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans Wireless Commun 7(10):3845–3857. https://doi.org/10.1109/T-WC.2008.070391

    Article  Google Scholar 

  103. Priyadarshi R, Yadav S, Bilyan D (2019) Performance analysis of adapted selection based protocol over LEACH protocol. In: Luhach AK, Hawari KBG, Mihai IC, Hsiung P-A, Mishra RB (eds) Smart Computational Strategies: Theoretical and Practical Aspects, pp 247–256. Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_21

  104. Priyadarshi R, Soni SK, Bhadu R, Nath V (2018) Performance analysis of diamond search algorithm over full search algorithm. Microsyst Technol 24(6):2529–2537. https://doi.org/10.1007/s00542-017-3625-0

    Article  Google Scholar 

  105. Kumar S, Soni SK, Randheer, Priyadarshi R (2020) Performance Analysis of Novel Energy Aware Routing in Wireless Sensor Network. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 642, pp. 503–511). Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44

  106. Singh L, Kumar A, Priyadarshi R (2020) Performance and comparison analysis of image processing based forest fire detection. In: Nath V, Mandal J (eds) Nanoelectronics, circuits and communication systems. NCCS 2018. Lecture notes in electrical engineering, vol 642. Springer, Singapore, pp 473–479. https://doi.org/10.1007/978-981-15-2854-5_41

  107. Min H, Lei X, Wu X, Fang Y, Chen S, Wang W,…, Zhao X (2024) Toward interpretable anomaly detection for autonomous vehicles with denoising variational transformer. Eng Appl Artif Intell 129:107601. https://doi.org/10.1016/j.engappai.2023.107601

  108. Yu J, Lu L, Chen Y, Zhu Y, Kong L (2021) An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans Mob Comput 20(2):337–351. https://doi.org/10.1109/TMC.2019.2947468

    Article  Google Scholar 

  109. Mao Y, Sun R, Wang J, Cheng Q, Kiong LC,…, Ochieng WY (2022) New time-differenced carrier phase approach to GNSS/INS integration. GPS Solutions 26(4):122. https://doi.org/10.1007/s10291-022-01314-3

  110. Mao Y, Zhu Y, Tang Z, Chen Z (2022) A novel airspace planning algorithm for cooperative target localization. Electronics 11(18):2950. https://doi.org/10.3390/electronics11182950

    Article  Google Scholar 

  111. Liu H, Yuan H, Hou J, Hamzaoui R, Gao W (2022) PUFA-GAN: a frequency-aware generative adversarial network for 3D point cloud upsampling. IEEE Trans Image Process 31:7389–7402. https://doi.org/10.1109/TIP.2022.3222918

    Article  Google Scholar 

  112. Liu L, Song Y, Zhang H, Ma H, Vasilakos AV (2015) Physarum optimization: a biology-inspired algorithm for the steiner tree problem in networks. IEEE Trans Comput 64(3):819–832. https://doi.org/10.1109/TC.2013.229

    Article  MathSciNet  Google Scholar 

  113. Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV (2011) Prediction-based data aggregation in wireless sensor networks: combining grey model and Kalman filter. Comput Commun 34(6):793–802. https://doi.org/10.1016/j.comcom.2010.10.003

    Article  Google Scholar 

  114. Saleem Y, Rehmani MH (2014) Primary radio user activity models for cognitive radio networks: a survey. J Netw Comput Appl 43:1–16. https://doi.org/10.1016/j.jnca.2014.04.001

    Article  Google Scholar 

  115. Wang B, Ji Z, Liu KJR, Clancy TC (2009) Primary-prioritized Markov approach for dynamic spectrum allocation. IEEE Trans Wireless Commun 8(4):1854–1865. https://doi.org/10.1109/T-WC.2008.080031

    Article  Google Scholar 

  116. Tesauro G (2002) Programming backgammon using self-teaching neural nets. Artif Intell 134(1–2):181–199. https://doi.org/10.1016/S0004-3702(01)00110-2

    Article  Google Scholar 

  117. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292. https://doi.org/10.1007/BF00992698

  118. Jiang T, Wang H, Vasilakos AV (2012) QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE J Sel Areas Commun 30(7):1215–1224. https://doi.org/10.1109/JSAC.2012.120807

    Article  Google Scholar 

  119. Fu C, Yuan H, Xu H, Zhang H, Shen L (2023) TMSO-Net: texture adaptive multi-scale observation for light field image depth estimation. J Vis Commun Image Represent 90:103731. https://doi.org/10.1016/j.jvcir.2022.103731

  120. Jiang Y, Li X (2022) Broadband cancellation method in an adaptive co-site interference cancellation system. Int J Electron 109(5):854–874. https://doi.org/10.1080/00207217.2021.1941295

    Article  Google Scholar 

  121. Hu J, Wu Y, Li T, Ghosh BK (2019) Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans Autom Control 64(5):2122–2127. https://doi.org/10.1109/TAC.2018.2872197

    Article  MathSciNet  Google Scholar 

  122. Chen B, Hu J, Zhao Y, Ghosh BK (2022) Finite-time velocity-free Rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst Man Cybernetics: Syst 52(10):6618–6629. https://doi.org/10.1109/TSMC.2022.3148295

    Article  Google Scholar 

  123. Wang Q, Hu J, Wu Y, Zhao Y (2023) Output synchronization of wide-area heterogeneous multi-agent systems over intermittent clustered networks. Inf Sci 619:263–275. https://doi.org/10.1016/j.ins.2022.11.035

    Article  Google Scholar 

  124. Zhang X, Deng H, Xiong Z, Liu Y, Rao Y, Lyu Y,…, Li Y (2024) Secure routing strategy based on attribute-based trust access control in social-aware networks. J Signal Process Syst. https://doi.org/10.1007/s11265-023-01908-1

  125. Lyu T, Xu H, Zhang L, Han Z (2024) Source selection and resource allocation in wireless-powered relay networks: an adaptive dynamic programming-based approach. IEEE Internet Things J 11(5):8973–8988. https://doi.org/10.1109/JIOT.2023.3321673

    Article  Google Scholar 

  126. Liu G (2021) Data collection in MI-assisted wireless powered underground sensor networks: directions, recent advances, and challenges. IEEE Commun Mag 59(4):132–138. https://doi.org/10.1109/MCOM.001.2000921

    Article  Google Scholar 

  127. Liu X, Lou S, Dai W (2023) Further results on system identification of nonlinear state-space models. Automatica 148:110760. https://doi.org/10.1016/j.automatica.2022.110760

    Article  MathSciNet  Google Scholar 

  128. Wang Q, Dai W, Zhang C, Zhu J, Ma X (2023) A compact constraint incremental method for random weight networks and its application. IEEE transactions on neural networks and Learning systems. https://doi.org/10.1109/TNNLS.2023.3289798

    Article  Google Scholar 

  129. Yang X, Wang X, Wang S, Puig V (2023) Switching-based adaptive fault-tolerant control for uncertain nonlinear systems against actuator and sensor faults. J Franklin Inst 360(16):11462–11488. https://doi.org/10.1016/j.jfranklin.2023.08.042

    Article  MathSciNet  Google Scholar 

  130. Hu F, Qiu L, Wei S, Zhou H, Bathuure IA,…, Hu H (2023) The spatiotemporal evolution of global innovation networks and the changing position of China: a social network analysis based on cooperative patents. R&D Management. https://doi.org/10.1111/radm.12662

  131. Hu F, Mou S, Wei S, Qiu L, Hu H,…, Zhou H (2024) Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strat Rev 51:101309. https://doi.org/10.1016/j.esr.2024.101309

  132. Jiang Z, Xu C (2023) Disrupting the technology innovation efficiency of manufacturing enterprises through digital technology promotion: an evidence of 5G technology construction in China. IEEE Trans Eng Manage. https://doi.org/10.1109/TEM.2023.3261940

    Article  Google Scholar 

  133. Cao K, Ding H, Li W, Lv L, Gao M, Gong F,…, Wang B (2022) On the Ergodic Secrecy Capacity of Intelligent Reflecting Surface Aided Wireless Powered Communication Systems. IEEE Wireless Commun Lett pp 1. https://doi.org/10.1109/LWC.2022.3199593

  134. Cheng B, Wang M, Zhao S, Zhai Z, Zhu D,…, Chen J (2017) Situation-aware dynamic service coordination in an IoT environment. IEEE/ACM Trans Netw 25(4):2082–2095. https://doi.org/10.1109/TNET.2017.2705239

  135. Zheng W, Lu S, Yang Y, Yin Z, Yin L,…, Ali H (2024) Lightweight transformer image feature extraction network. PeerJ Comput Sci 10:e1755. https://doi.org/10.7717/peerj-cs.1755

  136. Zheng W, Lu S, Cai Z, Wang R, Wang L,…, Yin L (2023) PAL-BERT: An Improved Question Answering Model. Comput Model Eng Sci. https://doi.org/10.32604/cmes.2023.046692

  137. Cao B, Zhao J, Lv Z, Gu Y, Yang P,…, Halgamuge SK (2020) Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction. IEEE Trans Fuzzy Syst 28(5): 939–952. https://doi.org/10.1109/TFUZZ.2020.2972207

  138. Cao B, Gu Y, Lv Z, Yang S, Zhao J,…, Li Y (2021) RFID reader anticollision based on distributed parallel particle swarm optimization. IEEE Int Things J 8(5):3099–3107. https://doi.org/10.1109/JIOT.2020.3033473

  139. Shen J, Sheng H, Wang S, Cong R, Yang D,…, Zhang Y (2024). Blockchain-based distributed multiagent reinforcement learning for collaborative multiobject tracking framework. IEEE Trans Comput 73(3):778–788. https://doi.org/10.1109/TC.2023.3343102

  140. Cao B, Zhao J, Gu Y, Fan S, Yang P (2020) Security-aware industrial wireless sensor network deployment optimization. IEEE Trans Industr Inf 16(8):5309–5316. https://doi.org/10.1109/TII.2019.2961340

    Article  Google Scholar 

  141. Huang W, Li T, Cao Y, Lyu Z, Liang Y, Yu L,…, Li Y (2023) Safe-NORA:Safe Reinforcement Learning-Based Mobile Network Resource Allocation for Diverse User Demands. Paper presented at the CIKM ‘23, New York. https://doi.org/10.1145/3583780.3615043

  142. Priyadarshi R, Gupta B (2023) 2-D coverage optimization in obstacle-based FOI in WSN using modified PSO. J Supercomputing 79(5):4847–4869. https://doi.org/10.1007/s11227-022-04832-6

    Article  Google Scholar 

  143. Anurag A, Priyadarshi R, Goel A, Gupta B (2020) 2-D coverage optimization in WSN using a novel variant of particle swarm optimisation. 2020 7th International Conference on Signal Processing and Integrated Networks, SPIN 2020, 663–668. https://doi.org/10.1109/SPIN48934.2020.9070978

  144. Buşoniu L, Babuška R, De Schutter B (2008) A comprehensive survey of multiagent reinforcement learning. IEEE Trans Syst Man Cybernetics Part C: Appl Reviews 38(2):156–172. https://doi.org/10.1109/TSMCC.2007.913919

    Article  Google Scholar 

  145. Wang Y, Zheng G, Ma H, Li Y, Li J (2018) A joint channel selection and routing protocol for cognitive radio network. Wirel Commun Mob Comput 2018:1. https://doi.org/10.1155/2018/6848641

    Article  Google Scholar 

  146. Gallager RG (1977) A minimum delay routing algorithm using distributed computation. IEEE Trans Commun 25(1):73–85. https://doi.org/10.1109/TCOM.1977.1093711

    Article  MathSciNet  Google Scholar 

  147. Vasilakos AV, Papadimitriou GI (1995) A new approach to the design of reinforcement schemes for learning automata: stochastic estimator learning algorithm. Neurocomputing 7(3):275–297. https://doi.org/10.1016/0925-2312(94)00027-P

    Article  Google Scholar 

  148. Priyadarshi R, Rana H, Srivastava A, Nath V (2023) A Novel Approach for Sink Route in Wireless Sensor Network. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 887, pp. 695–703). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_58

  149. Sateesh VA, Kumar A, Priyadarshi R, Nath V (2021) A Novel Deployment Scheme to Enhance the Coverage in Wireless Sensor Network. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 673, pp. 985–993). Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_82

  150. Priyadarshi R, Nath V (2019) A novel diamond–hexagon search algorithm for motion estimation. Microsyst Technol 25(12):4587–4591. https://doi.org/10.1007/s00542-019-04376-5

    Article  Google Scholar 

  151. Priyadarshi R, Singh L, Randheer, Singh A (2018) A Novel HEED Protocol for Wireless Sensor Networks. 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 296–300. https://doi.org/10.1109/SPIN.2018.8474286

  152. Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous clustering protocol for lifetime maximization of wireless sensor network. Wireless Pers Commun 117(2):825–841. https://doi.org/10.1007/s11277-020-07898-8

    Article  Google Scholar 

  153. Gupta T, Kumar A, Priyadarshi R (2020) A Novel Hybrid Precoding Technique for Millimeter Wave. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 642, pp. 481–493). Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_42

  154. Desai S, Kanphade R, Priyadarshi R, Rayudu KVBV, Nath V (2023) A novel technique for detecting crop diseases with efficient feature extraction. IETE J Res 1–9:1. https://doi.org/10.1080/03772063.2023.2220667

    Article  Google Scholar 

  155. Gershman SJ, Daw ND (2017) Reinforcement learning and episodic memory in humans and animals: an integrative framework. Ann Rev Psychol 68:101–128. https://doi.org/10.1146/annurev-psych-122414-033625

    Article  Google Scholar 

  156. Yau KLA, Komisarczuk P, Teal PD (2012) Reinforcement learning for context awareness and intelligence in wireless networks: review, new features and open issues. J Netw Comput Appl 35(1):253–267. https://doi.org/10.1016/j.jnca.2011.08.007

    Article  Google Scholar 

  157. Al-Rawi HAA, Yau KLA, Mohamad H, Ramli N, Hashim W (2014) Reinforcement learning for routing in cognitive radio ad hoc networks. Sci World J 2014:1. https://doi.org/10.1155/2014/960584

    Article  Google Scholar 

  158. Musavi M, Yau KLA, Syed AR, Mohamad H, Ramli N (2018) Route selection over clustered cognitive radio networks: an experimental evaluation. Comput Commun 129:138–151. https://doi.org/10.1016/j.comcom.2018.07.035

    Article  Google Scholar 

  159. Cesana M, Cuomo F, Ekici E (2011) Routing in cognitive radio networks: challenges and solutions. Ad Hoc Netw 9(3):228–248. https://doi.org/10.1016/j.adhoc.2010.06.009

    Article  Google Scholar 

  160. Campista MEM, Esposito PM, Moraes IM, Costa LHMK, Duarte OCMB, Passos DG, de Albuquerque CVN, Saade DCM, Rubinstein MG (2008) Routing metrics and protocols for wireless mesh networks. IEEE Network 22(1):6–12. https://doi.org/10.1109/MNET.2008.4435897

    Article  Google Scholar 

  161. Youssef M, Ibrahim M, Abdelatif M, Chen L, Vasilakos AV (2014) Routing metrics of cognitive radio networks: a survey. IEEE Commun Surv Tutorials 16(1):92–109. https://doi.org/10.1109/SURV.2013.082713.00184

    Article  Google Scholar 

  162. Singh K, Moh S (2016) Routing protocols in cognitive radio ad hoc networks: a comprehensive review. J Netw Comput Appl 72:28–37. https://doi.org/10.1016/j.jnca.2016.07.006

    Article  Google Scholar 

  163. Chowdhury KR, Felice MD (2009) Search: a routing protocol for mobile cognitive radio ad-hoc networks. Comput Commun 32(18):1983–1997. https://doi.org/10.1016/j.comcom.2009.06.011

    Article  Google Scholar 

  164. Priyadarshi R, Singh L, Singh A, Thakur A (2018) SEEN: stable energy efficient network for wireless sensor network. 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, pp 338–342. https://doi.org/10.1109/SPIN.2018.8474228

  165. Talay AC, Altilar DT (2013) Self adaptive routing for dynamic spectrum access in cognitive radio networks. J Netw Comput Appl 36(4):1140–1151. https://doi.org/10.1016/j.jnca.2013.01.007

    Article  Google Scholar 

  166. Ephremides A (1992) Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans Autom Control 37(12):1936–1948. https://doi.org/10.1109/9.182479

    Article  MathSciNet  Google Scholar 

  167. Lott C, Teneketzis D (2006) Stochastic routing in ad-hoc networks. IEEE Trans Autom Control 51(1):52–70. https://doi.org/10.1109/TAC.2005.860280

    Article  MathSciNet  Google Scholar 

  168. Kumar PR (1985) Survey of some results in stochastic adaptive control. SIAM J Control Optim 23(3):329–380. https://doi.org/10.1137/0323023

    Article  MathSciNet  Google Scholar 

  169. Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2003) The nonstochastic multiarmed bandit problem. SIAM J Comput 32(1):48–77. https://doi.org/10.1137/S0097539701398375

    Article  MathSciNet  Google Scholar 

  170. Priyadarshi R, Rawat P, Nath V, Acharya B, Shylashree N (2020) Three level heterogeneous clustering protocol for wireless sensor network. Microsyst Technol 26(12):3855–3864. https://doi.org/10.1007/s00542-020-04874-x

    Article  Google Scholar 

  171. Fortz B, Rexford J, Thorup M (2002) Traffic engineering with traditional IP routing protocols. IEEE Commun Mag 40(10):118–124. https://doi.org/10.1109/MCOM.2002.1039866

    Article  Google Scholar 

  172. Fortuna C, Mohorcic M (2009) Trends in the development of communication networks: cognitive networks. Comput Netw 53(9):1354–1376. https://doi.org/10.1016/j.comnet.2009.01.002

    Article  Google Scholar 

  173. Srivastava V, Neel J, Mackenzie AB, Menon R, Dasilva LA, Hicks JE, Reed JH, Gilles RP (2005) Using game theory to analyze wireless ad hoc networks. IEEE Commun Surv Tutorials 7(4):46–56. https://doi.org/10.1109/COMST.2005.1593279

    Article  Google Scholar 

  174. Priyadarshi R, Bhardwaj P, Gupta P, Nath V (2023) Utilization of smartphone-based wireless sensors in agricultural science: A State of Art. In: Nath V, Mandal JK (eds) Lecture Notes in Electrical Engineering (Vol. 887, pp. 681–688). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_56

  175. Raghunathan V, Kumar PR (2009) Wardrop routing in wireless networks. IEEE Trans Mob Comput 8(5):636–652. https://doi.org/10.1109/TMC.2008.164

    Article  Google Scholar 

  176. Priyadarshi R, Gupta B, Anurag A (2020) Wireless sensor networks deployment: a result oriented analysis. Wireless Pers Commun 113(2):843–866. https://doi.org/10.1007/s11277-020-07255-9

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors played key roles in shaping the content of this paper. Rahul Priyadarshi, Ravi Ranjan Kumar, and Zhang Ying collaborated in conceiving and designing the experiments. Rahul Priyadarshi and Ravi Ranjan Kumar carried out the experiments, and Zhang Ying contributed to the data analysis. The collaborative effort of Rahul Priyadarshi, Ravi Ranjan Kumar, and Zhang Ying is reflected in the joint writing of the paper.

Corresponding author

Correspondence to Zhang Ying.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshi, R., Kumar, R.R. & Ying, Z. Techniques employed in distributed cognitive radio networks: a survey on routing intelligence. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19054-6

Keywords

Navigation