Skip to main content
Log in

Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Xanthomonas campestris pv campestris (Xcc), causing black rot, is one of the most yield-limiting and destructive pathogens of cruciferous crops. The intention of this study was to evaluate the potential of rhizobacteria in black rot management. Fifty-four isolates from rhizosphere soil of Brassica campestris were screened against Xcc. Two isolates namely, KA19 and SE, with inhibition radius >11 mm were selected. The combined use of them produced an average inhibition zone of 18.1 ± 1.4 mm radius (P < 0.05). 16S rRNA gene sequencing and phylogenetic analysis identified KA19 and SE as the nearest homologs (>99.4%) of Pseudomonas aeruginosa and Bacillus thuringiensis, respectively. In greenhouse study, both isolates were effective (P < 0.05) in reducing black rot lesions compared to untreated control involving either a foliar spray or the combined seed soak and soil drench. However, the combined strains (KA19 + SE) were significantly more effective (P < 0.05) when the mode of application was combined seed and soil drench. The lipid content of seeds increased significantly with the application of these strains, especially with SE alone and in combination. After 9 weeks, the Xcc population was significantly lower in soil treated with combined strains (P < 0.05). KA19 produced extracellular siderophores, influenced by various carbon sources and identified as 4-hydroxy-2-nonyl-quinoline by NMR. In Bacillus SE, two antibacterial factors corresponding to autolysins (β-N-acetylglucosaminidase) and AHL-lactonases were established. This study would strengthen our understanding for application of different rhizobacteria with various active principles like Pseudomonas and Bacillus as ingredients of a biocontrol mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Bardas GA, Lagopodi AL, Kadoglidou K, Tzavella-Klonari K (2009) Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol Control 49:139–145

    Article  Google Scholar 

  • Biswas SK, Srivastava KD, Aggarwal R, Parveen S, Singh DV (2003) Biochemical changes in wheat induced by Chaetomium globosum against spot blotch pathogen. Indian Phytopathol 56:374–379

    CAS  Google Scholar 

  • Buchenauer H (1998) Biological control of soilborne diseases by rhizobacteria. J Plant Dis Prot 104:329–348

    Google Scholar 

  • Chang CJ, Donaldson R, Crowley M, Pinow M (1991) A new semiselective medium for the isolation of Xanthomonas campestris pv campestris from crucifer seeds. Phytopathology 81:449–453

    Article  Google Scholar 

  • Cibik R, Chapot-Chartier MP (2000) Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE. J Appl Microbiol 89(5):862–869

    Article  CAS  Google Scholar 

  • Cook AA, Walker JC, Larson RH (1952) Studies on the disease cycle of black rot of crucifers. Phytopathology 42:162–167

    Google Scholar 

  • Cox CD (1994) Deferration of laboratory media and assays for ferric and ferrous ions. Methods Enzymol 235:315–329

    Article  CAS  Google Scholar 

  • Djibaoui R, Bensoltane A (2005) Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr J Biotechnol 4:697–702

    Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258

    Article  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97(7):3526–3531

    Article  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70(2):954–960

    Article  CAS  Google Scholar 

  • Dumas-Gaudot E, Grenier J, Furlan V, Asselin A (1984) Chitinase, chitosanase and b-1, 3 glucanase activities in Allium and Pisum roots colonised by Glomus species. Plant Sci 84:17–24

    Article  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Kloepper JW, Rodriguze-Kabana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Kocks CG, Zadoks JC (1996) Cabbage refuse piles as sources of inoculum for black rot epidemics. Plant Dis 80:789–792

    Article  Google Scholar 

  • Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68(8):3919–3924

    Article  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (ribosomal database project) continues. Nucleic Acids Res 28(1):173–174

    Article  CAS  Google Scholar 

  • Massomo SMS, Mortensen CN, Mabagala RB, Newman M-A, Hockenhull J (2004) Biological control of Black Rot (Xanthomonas campestris pv campestris) of Cabbage in Tanzania with Bacillus strains. J Phytopathol 152:98–105

    Article  Google Scholar 

  • Meier PS, Utz S, Aebi S, Muhlemann K (2003) Low-level resistance to rifampin in Streptococcus pneumoniae. Antimicrob Agents Chemother 47:863–868

    Article  CAS  Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens. Biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Mitchell JK, Carter WE (2000) Modeling antimicrobial activity of Clorox using an agar-diffusion test: a new twist on an old experiment. Bioscene 26:9–13

    Google Scholar 

  • Osborne TB (1907) The proteins of the wheat kernels, vol 84. Judd and Detweiler, Carnegie Institute, Washington DC

    Book  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  • Raddadi N, Cherif A, Mora D, Ouzari H, Boudabous A, Molinari F, Daffonchio D (2004) The autolytic phenotype of Bacillus thuringiensis. J Appl Microbiol 97(1):158–168

    Article  CAS  Google Scholar 

  • Rodgers PB (1989) Potential of bological control organisms as a source of antifungal compounds for agrochemical and pharmaceutical product development. Pestic Sci 27:155–164

    Article  CAS  Google Scholar 

  • Royt PW, Honeychuck RV, Ravich V, Ponnaluri P, Pannell LK, Buyer JS, Chandhoke V, Stalick WM, DeSesso LC, Donohue S, Ghei R, Relyea JD, Ruiz R (2001) 4-hydroxy-2-nonylquinoline: a novel iron chelator isolated from a bacterial cell membrane. Bioorg Chem 29(6):387–397

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schaad NW (ed) (1989) Detection of Xanthomonas campestris pv campestris in crucifers. Detection of plant pathogenic bacteria in seeds and other planting materials. APS press, St. paul

    Google Scholar 

  • Schaad NW, Alvarez A (eds) (1993) Xanthomonas campestris pv campestris: cause of black rot of crucifers. Xanthomonas. Chapman & Hall, London

    Google Scholar 

  • Schmidt C, Lorenz D, Wolf G (2001) Biological control of the grapevine dieback fungus Eutypa lata. Screening of bacterial antagonists. J Phytopathol 149:427–435

    Article  Google Scholar 

  • Schreiber LR, Gregory GF, Krause CR, Ichida JM (1988) Production, partial purification and antimicrobial activity of a novel antibiotic produced by a Bacillus subtillis isolated from Ulmus americana. Can J Botany 66:2338–2346

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Combat of iron-deprivation through a plant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol Res 158:77–81

    Article  CAS  Google Scholar 

  • Sharma S, Singh J, Munshi GD, Munshi SK (2010) Effects of biocontrol agents on lipid and protein composition of Indian mustard seeds from plants infected with Alternaria species. Arch Phytopathol Plant Prot 43:589–596

    Article  CAS  Google Scholar 

  • Shivkumar G, Sharma RC (2003) Induced biochemical changes due to seed bacterization by P. fluorescens in maize plants. Indian Phytopathol 56:134–137

    Google Scholar 

  • Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soil-borne pathogens. Crop Prot 24:601–613

    Article  Google Scholar 

  • Taylor GW, Machan ZA, Mehmet S, Cole PJ, Wilson R (1995) Rapid identification of 4-hydroxy-2-alkylquinolines produced by Pseudomonas aeruginosa using gas chromatography-electron-capture mass spectrometry. J Chromatogr 664(2):458–462

    Article  CAS  Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv campestris in Brassica genomes. Phytopathology 92:105–111

    Article  CAS  Google Scholar 

  • Tsujii E, Muroi M, Shiragami N, Takatsuki A (1996) Nectrisine is a potent inhibitor of a-glucosidases, demonstrating activities similarly at enzyme and cellular levels. Biochem Biophys Res Commun 220:459–466

    Article  CAS  Google Scholar 

  • Tuzun S, Rao MN, Vogeli V, Schardli CL, Kuc J (1989) Induction of systemic resistance to blue mold: early induction and accumulation of b 1, 3 glucanases, chitinases and other PR proteins in immunized tobacco. Phytopathology 79:979–984

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    CAS  Google Scholar 

  • Whipps JM (2001) Microbial interacions and biocontrol in the rhizosphere. J Exp Botany 52:487–511

    CAS  Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–745

    Article  Google Scholar 

  • Wulff EG, Mguni CM, Mortensen CN, Keswani CL, Hockenhull J (2002a) Biological control of black rot (Xanthomonas campestris pv campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur J Plant Pathol 108(4):317–325

    Article  Google Scholar 

  • Wulff EG, Mugni CM, Mansfeld-Giese K, Fels J, Lubeck M, Hockenhull J (2002b) Biochemical and molecular characterization of Bacillus amyloliquefacians, B. subtilis and B. pumulis isolates with distinct antagonistic potential against Xanthomonas campestris pv campestris. Plant Pathol 51:574–584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Vice Chancellors of C.S.J.M. University, Kanpur, B.B.A. University, Lucknow and Director, CDRI, Lucknow for providing facilities and support. The study was supported by Department of Biotechnology (DBT) grant BT/PR 10276/GBD/27/89/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen K. Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Arora, N.K. Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris . World J Microbiol Biotechnol 28, 693–702 (2012). https://doi.org/10.1007/s11274-011-0865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0865-5

Keywords

Navigation