Skip to main content
Log in

A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A xylanase gene, xynE2, was cloned from thermoalkaline Anoxybacillus sp. E2 and was expressed in Escherichia coli BL21 (DE3). The gene consisted of 987 bp and encoded a 328-residue xylanase with a calculated molecular weight of 38.8 kDa. On the basis of amino acid sequence similarities, this enzyme was assigned as a member of glycoside hydrolase family 10. Purified recombinant XynE2 showed maximal activity at pH 7.8 and 65°C, and was thermostable at 60°C. The enzyme was highly active and stable over a broad pH range, showing more than 90% of maximal activity at pH 6.6–pH 8.6 and retaining more than 80% of activity at pH 4.6–pH 12.0, 37°C for 1 h, respectively. These favorable properties make XynE2 a good candidate in the pulp and paper industries. This is the first report on gene cloning, expression and characterization of a xylanase from the genus Anoxybacillus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baba T, Shinke R, Nanmori T (1994) Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl Environ Microbiol 60:2252–2258

    CAS  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Belduz AO, Dulger S, Demirbag Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320

    Article  CAS  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Blanco A, Vidal T, Colom JF, Pastor FI (1995) Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23. Appl Environ Microbiol 61:4468–4470

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buchert J, Ranua M, Kantelinen A, Viikari L (1992) The role of two trichoderma reesei xylanases in the bleaching of pine kraft pulp. Appl Microbiol Biotechnol 37:825–829

    Article  CAS  Google Scholar 

  • Christov LP, Myburgh J, O’Neill FH, Van Tonder A, Prior BA (1999) Modification of the carbohydrate composition of sulfite pulp by purified and characterized beta-xylanase and beta-xylosidase of Aureobasidium pullulans. Biotechnol Prog 15:196–200

    Article  CAS  Google Scholar 

  • Colak A, Sisik D, Saglam N, Guner S, Canakci S, Belduz AO (2005) Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour Technol 96:625–631

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • De Clerck E, Rodriguez-Diaz M, Vanhoutte T, Heyrman J, Logan NA, De Vos P (2004) Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol 54:941–946

    Article  Google Scholar 

  • Derekova A, Sjoholm C, Mandeva R, Kambourova M (2007) Anoxybacillus rupiensis sp. Nov., a novel thermophilic bacterium isolated from rupi basin (Bulgaria). Extremophiles 11:577–583

    Article  Google Scholar 

  • Ertunga NS, Colak A, Belduz AO, Canakci S, Karaoglu H, Sandalli C (2007) Cloning, expression, purification and characterization of fructose-1, 6-bisphosphate aldolase from Anoxybacillus gonensis G2. J Biochem 141:817–825

    Article  CAS  Google Scholar 

  • Feng JX, Karita S, Fujino E, Fujino T, Kimura T, Sakka K, Ohmiya K (2000) Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci Biotechnol Biochem 64:2614–2624

    Article  CAS  Google Scholar 

  • Fukumura M, Sakka K, Shimada K, Ohmiya K (1995) Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci Biotechnol Biochem 59:40–46

    Article  CAS  Google Scholar 

  • Gallardo O, Diaz P, Pastor FI (2003) Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl Microbiol Biotechnol 61:226–233

    CAS  Google Scholar 

  • Gallardo O, Diaz P, Pastor FI (2004) Cloning and characterization of xylanase A from the strain Bacillus sp. BP-7: comparison with alkaline pI-low molecular weight xylanases of family 11. Curr Microbiol 48:276–279

    Article  CAS  Google Scholar 

  • Gat O, Lapidot A, Alchanati I, Regueros C, Shoham Y (1994) Cloning and DNA sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase. Appl Environ Microbiol 60:1889–1896

    CAS  Google Scholar 

  • Georis J, Giannotta F, De Buyl E, Granier B, Frere JM, De Buyl E (2000) Purification and properties of three endo-beta-1, 4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microb Tech 26:178–186

    Article  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RA (1991) Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696

    Google Scholar 

  • Huang J, Wang G, Xiao L (2006) Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. Bioresour Technol 97:802–808

    Article  CAS  Google Scholar 

  • Huang H, Shao N, Wang Y, Luo H, Yang P, Zhou Z, Zhan Z, Yao B (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83:249–259

    Article  CAS  Google Scholar 

  • Jalal A, Rashid N, Rasool N, Akhtar M (2009) Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5. J Biosci Bioeng 107:360–365

    Article  CAS  Google Scholar 

  • Khandeparkar R, Bhosle NB (2007) Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresour Technol 98:897–903

    Article  CAS  Google Scholar 

  • Khanongnuch C, Lumyong S, Ooi T, Kinoshita S (1999) A noncellulase producing strain of Bacillus subtilis and its potential use in pulp biobleaching. Biotechnol Lett 21:61–63

    Article  CAS  Google Scholar 

  • Khasin A, Alchanati Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lee CC, Wong DW, Robertson GH (2005) Cloning and characterization of the xyn11A gene from Lentinula edodes. Protein J 24:21–26

    Article  CAS  Google Scholar 

  • Levasseur A, Asther M, Record E (2005) Overproduction and charachterization of xylanase B from Aspergillus niger. Can J Microbiol 51:177–183

    Article  CAS  Google Scholar 

  • Li XL, Ljungdahl LG (1994) Cloning, sequencing, and regulation of a xylanase gene from the fungus Aureobasidium pullulans Y-2311-1. Appl Environ Microbiol 60:3160–3166

    CAS  Google Scholar 

  • Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, Yang P, Yao B (2008a) Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol 80:231–240

    Article  CAS  Google Scholar 

  • Li N, Yang P, Wang Y, Luo H, Meng K, Wu N, Fan Y, Yao B (2008b) Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. k11. J Microbiol Biotechnol 18:410–416

    CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    Article  CAS  Google Scholar 

  • Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41 M–1. Appl Environ Microbiol 59:2311–2316

    CAS  Google Scholar 

  • Ninawe S, Kuhad RC (2006) Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32. Bioresour Technol 97:2291–2295

    CAS  Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. Int J Syst Evol Microbiol 50(6):2109–2117

    CAS  Google Scholar 

  • Pikuta E, Cleland D, Tang J (2003) Aerobic growth of Anoxybacillus pushchinoensis K1(T): emended descriptions of A. pushchinoensis and the genus Anoxybacillus. Int J Syst Evol Microbiol 53:1561–1562

    Article  CAS  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131

    CAS  Google Scholar 

  • Ragauskas AJ, Poll KM, Cesternino AJ (1994) Effects of xylanase pretreatment procedures on nonchlorine bleaching. Enzyme Microb Tech 16:492–495

    Article  CAS  Google Scholar 

  • Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G (2007) Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr D Biol Crystallogr 63:845–859

    Article  CAS  Google Scholar 

  • Tabernero C, Sanchez-Torres J, Perez P, Santamaria RI (1995) Cloning and DNA sequencing of xyaA, a gene encoding an endo-beta-1, 4-xylanase from an alkalophilic Bacillus strain (N137). Appl Environ Microbiol 61:2420–2424

    CAS  Google Scholar 

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  • Wood PJ, Erfle JD, Teather RM (1988) Use of complex formation between congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol 160:59–74

    Article  CAS  Google Scholar 

  • Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72:1210–1216

    Article  CAS  Google Scholar 

  • Yumoto I, Hirota K, Kawahara T, Nodasaka Y, Okuyama H, Matsuyama H, Yokota Y, Nakajima K, Hoshino T (2004) Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in kamchatka. Int J Syst Evol Microbiol 54:1239–1242

    Article  CAS  Google Scholar 

  • Zamost BL, Nielsen HK, Starnes RL (1991) Thermostable enzymes for industrial applications. J Ind Microbiol Biotechnol 8:71–81

    CAS  Google Scholar 

  • Zhao J, Li X, Qu Y (2006) Application of enzymes in producing bleached pulp from wheat straw. Bioresour Technol 97:1470–1476

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National High Technology Research and Development Program of China (863 Program; grant no. 2007AA100601) and the National Key Technology Program of China (grant no. 2006BAD12B05-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Bai, Y., Yang, P. et al. A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 26, 917–924 (2010). https://doi.org/10.1007/s11274-009-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0254-5

Keywords

Navigation