Skip to main content
Log in

Analysis of Chemical Features of a Soil Used as Landfill: Using the X-Ray Fluorescence (XRF) Technique

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil is the support medium for the development of several activities; however, improperly used soils can become a serious environmental issue. The aim of the current study is to determine the concentration of chemical elements in soil used as landfill in Southern Brazil. Samples were collected in different soil profiles and depths and analyzed based on the X-ray fluorescence technique. Results have indicated changes in cadmium and chromium concentrations, regardless of the collection depth. The presence of iron oxides/hydroxides and 1:1 low CEC kaolinite clay in the samples may have contributed to the translocation of these elements to the underground environment. Thus, the adopted technique was efficient and enabled identifying changes in the concentrations of the investigated elements, which can be associated with their translocation through soil profile (in depth), as well as in comparing such concentrations to the ones set by the current legislation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamcová, D., Vaverková, M. D., Barton, S., Havlícek, Z., & Brousková, E. (2016). Soil contamination in landfills: a case study of a landfill in Czech Republic. Solid Earth. https://doi.org/10.5194/se-7-239-2016.

  • Adelakan, B. A., & Alawode, A. O. (2011). Contributions of municipal refuse dumps to heavy metals concentrations in soil profile and groundwater in Ibadan Nigeria. Journal of Applied Biosciences, 40, 2727–2737.

    Google Scholar 

  • Ahel, M., Mikac, N., Cosovic, B., Prohic, E., & Soukup, V. (1998). The impact of contamination from a municipal solid waste landfill (Zagreb, Croatia) on underlying soil. Water Science and Tecnology. https://doi.org/10.1016/S0273-1223(98)00260-1.

  • Alam, R., Ahmed, Z., & Farhad Howladar, M. (2020). Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla bazar in Sylhet, Bangladesh. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100311.

  • Amusan, A. A., Ige, D. V., & Olawale, R. (2005). Characteristics of soils and crops uptake of metals in municipal waste dump sites in Nigeria. Journal of Human Ecology. https://doi.org/10.1080/09709274.2005.11905775.

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. Washington: CRC PRESS.

    Google Scholar 

  • Aubert, H., & Pinta, M. (1977). Trace elements in soils. New York: Elsevier.

  • Augustin Júnior, P. V., & Viero, A. P. (2012). Environmental impact and geochemical behavior of soil contaminants from an industrial waste landfill in southern Brazil. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1597-z.

  • Azevedo, A. M., Andrade Júnior, V. A., Fernandes, J. S. C., Pedrosa, C. E., Valadares, N. R., Ferreira, A. M., & Martins, R. A. V. (2014). Divergência genética e importância de caracteres morfológicos em genótipos de couve. Horticultura Brasileira, 32, 48–54.

    Article  Google Scholar 

  • Bahaa-Eldin, E. A. R., Yusoff, I., Rahim, S. A., Zuhairi, W. Y. W., & Ghani, A. (2008). Heavy metal contamination of soil beneath a waste disposal site at Dengkil, Selangor, Malaysia. Soil and Sediment Contamination: An International Journal. https://doi.org/10.1080/15320380802304342.

  • Benitez, L. C., Rodrigues, I. C. S., Arge, L. W. P., Ribeiro, M. V., & Braga, E. J. B. (2011). Análise multivariada da divergência genética de genótipos de arroz sob estresse salino durante a fase vegetativa. Revista Ciência Agronômica, 42(2), 409–416.

    Article  Google Scholar 

  • Betjtin, A. (1966). Curso de mineralogia. Barcelona: Ed. Mir.

    Google Scholar 

  • BRASIL. (2009). Resolução CONAMA no 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial da União, Brasília, DF, 28 dez. 2009. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed 10 February 2018.

  • Brasil. (2010). Lei Federal n° 12.305 de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências. Diário Oficial da União, Brasília, DF, 2 agos. 2014. Available at: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Accessed February 10th, 2015.

  • Brasil. (2019). Ministério do Desenvolvimento Regional. Secretaria Nacional de Saneamento – SNS. Sistema Nacional de Informações sobre Saneamento: Diagnóstico do Manejo de Resíduos Sólidos Urbanos – 2018. Brasília: SNS/MDR, 2019. 247p.

  • Brazilian Agricultural Research Corporation (EMBRAPA). (2018). Manual e métodos de análise de solo. Brasília: EMBRAPA.

    Google Scholar 

  • Brazilian Geological Survey (CPRM). (2006). Mapa geológico do Estado do Rio Grande do Sul. Porto Alegre: CPRM.

    Google Scholar 

  • Brazilian National Standards Organization (ABNT). (1997). NBR 13.969: Projeto, construção e operação de tanques sépticos. Rio de Janeiro: ABNT.

    Google Scholar 

  • Bruker. (2011a). Mining calibrations: user guide addendum. Massachusetts: Bruker.

    Google Scholar 

  • Bruker. (2011b). S1 TURBO SD - User Guide. Massachusetts: Bruker.

    Google Scholar 

  • Cruz, C. D. (2006). Programa genes – análise multivariada e simulação. Viçosa: Editora da UFV.

    Google Scholar 

  • Cruz, C. D., & Carneiro, P. C. S. (2006). Modelos biométricos aplicados ao melhoramento genético. Viçosa: Editora da UFV.

    Google Scholar 

  • da Cunha Rebouças, A., Braga, B., & Tundisi, J. G. (2002). Águas doces do Brasil: Capital ecológico, uso e conservação. São Paulo: Escrituras.

    Google Scholar 

  • da Silva, P. R. B., Schnitzler, D. C., & Poleto, C. (2017). Avaliação da qualidade dos sedimentos por índices de qualidade ambiental: Panorama em periódicos da área. In C. Poleto (Ed.), Estudos ambientais. Rio de Janeiro: Interciência.

    Google Scholar 

  • de Borba, W. F. (2016). Vulnerabilidade natural à contaminação da água subterrânea em área ocupada por aterro sanitário em Seberi – RS. 174f. Dissertação (Mestrado em Engenharia Ambiental) – Universidade Federal de Santa Maria, Santa Maria, 2016.

  • de Oliveira, V. H. (2013). Concentração de base e risco ecotoxicológico de Cádmio em solos. 2013. 111f. Dissertação (Mestrado em Agricultura Tropical e Subtropical) - Instituto Agronômico, Campinas, SP, 2013.

  • do Prado, H. (2013). Pedologia fácil: Aplicações em solos tropicais. Piracicaba, SP: Fundag.

    Google Scholar 

  • dos Santos, T. L., & Paes, L. W. C. (2016). Substancias húmicas: Em breve relato sobre a importância e suas interações. Revista Educação Pública.

  • dos Santos, H. G., Jacomine, P. K. T., Dos Anjos, L. H. C., De Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., De Almeida, J. A., Araújo, F., De, J. C., De Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema Brasileiro de classificação de solos. Brasília: EMBRAPA.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters: surface and groundwater environments. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Fajardo, C., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., & Martín, M. (2019). Pb, Cd, and Zn soil contamination: Monitoring functional and structural impacts on the microbiome. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2018.10.022.

  • Hakansol, L. (1980). Ecological riskindex for aquatic pollution control, a sedimentological approach. Water Research. https://doi.org/10.1016/0043-1354(80)90143-8.

  • Hortellani, M.A., Sarkis, J. E. S., Menezes,L. C. B., Bazante-Yamaguishi, R., Pereira, A. S. A., Garcia, P. F. G., Maruyamab, L. S. & Castro, P. M. G. de. (2013). Assessment of Metal Concentration in the Billings Reservoir Sediments, São Paulo State, Southeastern Brazil. Journal Brazilian Chemical Society, 24(1), 58–67.

  • Ihedioha, J. N., Ukoha, P. O., & Ekere, N. R. (2016). Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environment Geochemistry and Health. https://doi.org/10.1007/s10653-016-9830-4.

  • Iwai, C. K. (2012). Avaliação da qualidade das águas subterrâneas e do solo em áreas de disposição final de resíduos sólidos urbanos em municípios de pequeno porte: Aterro sanitário em valas. 2012. 270f. Tese (Doutorado em Saúde Pública) – Universidade de São Paulo, São Paulo, SP.

  • Kabata-Pendias, A. & Adriano, D. C. (1995). Trace metals. In: Rechcigl, J. E. (Ed.), Soil amendments and environmental quality. Boca Raton: Lewis.

  • Kanmani, S., & Gandhimathi, R. (2013). Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied Water Science. https://doi.org/10.1007/s13201-012-0072-z.

  • Kasassi, A., Rakimbei, P., Karagiannidis, A., Zabaniotou, A., Tsiouvaras, C., Nastis, A., & Tzafeiropoulou, K. (2008). Soil contamination by heavy metals: Measurements from a closed unlined landfill. Bioresource Technology. https://doi.org/10.1016/j.biortech.2008.04.010.

  • Kribek, B., Nyambe, I., Majer, V., Knésl, I., Mihaljevic, M., Ettler, V., Vanek, A., Penízek, V., & Sracek, O. (2019). Soil contamination near the Kabwe Pb-Zn smelter in Zambia: environmental impacts and remediation measures proposal. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2018.11.018.

  • Lamine, S., Petropoulos, G. P., Brewer, P. A., Bachari, N.-E.-I., Srivastava, P. K., Manevski, K., Kalaitzidis, C., & Macklin, M. G. (2019). Heavy metal soil contamination detection using combined geochemistry and field spectroradiometry in the United Kingdom. Sensors. https://doi.org/10.3390/s19040762.

  • Liu, C., Cui, J., Jiang, G., Chen, X., Wang, L., & Fang, C. (2012). Soil heavy metal pollution assessment near the largest landfill of China. Soil and Sediment Contamination: An International Journal. https://doi.org/10.1080/15320383.2013.733447.

  • Liu, W.-S., Guo, M.-N., Liu, C., Yuan, M., Chen, X.-T., Huot, H., Zhao, C.-M., Tang, Y.-T., Morel, J. L., & Rong-Liang, Q. (2019). Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.10.109.

  • Machado, J. L. F., & Freitas, M. A. (2005). Projeto mapa hidrogeológico do Estado do Rio Grande do Sul: escala 1:750.000, relatório final. Porto Alegre: CPRM.

    Google Scholar 

  • Marim, B. G., da Silva, D. J. H., Carneiro, P. C. S., Miranda, G. V., Mattedi, A. P., & Caliman, F. R. B. (2009). Variabilidade genética e importância relativa de caracteres em acessos de germoplasma de tomateiro. Revista Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/S0100-204X2009001000011.

  • Moreno, J. A. (1961). Clima do Rio Grande do Sul. Secção de Geografia. Porto Alegre: Secretaria da Agricultura.

    Google Scholar 

  • Mukhopadhyay, S., Chakraborty, S., Bhadoria, P. B. S., Li, B., & Weindorf, D. C. (2020). Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2019.e00249.

  • Nick, C., de Carvalho, S. P., Jesus, A. M. S., Custódio, T. N., Marim, B. G., & de Assis, L. H. B. (2010). Divergência genética entre subamostras de mandioca. Revista Bragantia. https://doi.org/10.1590/S0006-87052010000200005.

  • Opaluwa, O. D., Aremu, M. O., Ogbo, L. O., Abiola, K. A., Odiba, I. E., Abubakar, M. M., & Nweze, N. O. (2012). Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia Metropolis, Nasarawa State, Nigeria. Advances in Applied Science Research, 3(2), 780–784.

    CAS  Google Scholar 

  • Pasko, O. A., & Mochalova, T. N. (2014). Toxicity assessment of contaminated soils of solid domestic waste landfill. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/21/1/012044.

  • SAS Institute. (1997). SAS/STAT software: Changes and enhancements through release 6.12. Cary: Statistical Analysis System Institute.

    Google Scholar 

  • Schenato, F., Schröder, N. T., & Martins, F. B. (2008). Assessment of contaminated soils by heavy metals in municipal solid waste landfills in southern Brazil. WSEAS Transactions on Environment and Development, 9(4), 745–755.

    Google Scholar 

  • Secretariat of Environment and Infrastructure (SEMA). (2004). Mapa das bacias hidrográficas e municípios do Rio Grande do Sul. Porto Alegre: SEMA.

    Google Scholar 

  • Shaheen, S. M., Antoniadis, V., Kwon, E., Hocheol, C., Wang, S.-L., Hseu, Z.-Y., & Rinklebe, J. (2020). Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: a case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114312.

  • Singh, D. (1981). The relative importance of characters affecting genetic divergence. The Indian Journal of Genetics e Plant Breeding, 41, 237–245.

    Google Scholar 

  • Sotério, P. W., Pedrollo, M. C. R., & Andriotti, J. L. (2005). Mapa de isoietas do Rio Grande do Sul. In: XVI Simpósio Brasileiro de Recursos Hídricos, 2005, João Pessoa/PB. Anais... João Pessoa/PB: ABRH, 2005.

  • State Foundation for Environmental Protection Henrique Luiz Roessler (FEPAM). (2014). Portaria FEPAM No 85/2014 - Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VRQ) dos solos para 09 (nove) elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do Estado do Rio Grande do Sul. Porto Alegre: FEPAM.

  • Streck, E. V., Kämpf, N., Dalmolin, R. S. D., Klamt, E., Do Nascimento, P. C., Schneider, P., Giasson, E., & Pinto, L. F. S. (2008). Solos do Rio Grande do Sul. Porto Alegre: EMATER/RS – ASCAR.

    Google Scholar 

  • Sun, Y., Li, H., Guo, G., Semple, K. T., & Jones, K. C. (2019). Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.109512.

  • Tang, J., Zhang, J., Ren, L., Zhou, Y., Gao, J., Luo, L., Yang, Y., Peng, Q., Huang, H., & Chen, A. (2019). Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.04.061.

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Analise de solo, plantas e outros materiais. Porto Alegre: UFRGS.

    Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network Ecology. https://doi.org/10.5402/2011/402647.

  • Zhan, J., Twardowska, I., Wang, S., Wei, S., Chen, Y., & Ljupco, M. (2019). Home prospective sustainable production of safe food for growing population based on the soybean (Glycine max L. Merr.) crops under cd soil contamination stress. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.11.287.

  • Zahra, A., Hashmi, M. Z., Malik, R. N. & Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir, Pakistan. Science Total Environment. https://doi.org/10.1016/j.scitotenv.2013.10.017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willian Fernando de Borba.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Borba, W.F., Silvério da Silva, J.L., da Cunha Kemerich, P.D. et al. Analysis of Chemical Features of a Soil Used as Landfill: Using the X-Ray Fluorescence (XRF) Technique. Water Air Soil Pollut 231, 295 (2020). https://doi.org/10.1007/s11270-020-04668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04668-x

Keywords

Navigation