Skip to main content

Advertisement

Log in

Heavy Metal Pollution Assessment Using Energy-Dispersive X-ray Fluorescence and Multivariate Statistical Approach of Soil from Phosphate Ore Sites, Southern Region of Togo

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Optimization of different types of exposure to workers, public, and vegetation is a major issue for several institutions. The main exposure is due to the activities related to various ores of the subsoil such as phosphate which generates heavy metals during its exploitation. This study used the energy-dispersive X-ray spectrometry to investigate the heavy metal pollution that affects life on earth. Fifteen different heavy metals were detected in soil samples from sites dedicated to phosphate ore activities in southern Togo. Results showed that the concentrations of the different heavy metals decreased in the following order: Ca > Fe > K > Ti > Sr > Zn > Zr > Y > Ni > Cu > Pb > U > Br > Rb > Th. Cadmium was not detected while lead remained the most toxic element with a maximum level of 52.4 mg kg−1. Basic statistics depicts strong positive correlations between Ni, Cu, Zn, and Fe which shows that their respective concentrations increased together. Principal component analysis was used to categorize all these data into three groups using two principal axes which recover 88.06% information. The geoacumulation index from Hahotoé-Kpogamé-Kpémé soil samples varies from class 0 to class 4 displaying that these areas are moderately polluted and was mainly due to Pb metal concentration. The potential ecological risk levels vary from 157 to 385, which corresponds to moderate and considerable levels. Therefore, these areas could be assumed to be safe regarding these levels. The moderate level observed on these various sites does not present a warning sign but should lead the legislators to establish routine monitoring in order to detect any change in the level of pollution due to heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adopted from Nečemer et al., 2008)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amouzouvi, Y. M., Dzagli, M. M., Sagna, K., Török, Z., Roba, C. A., Mereuţă, A., Ozunu, A. & Edjame, K. S. (2020). Evaluation of pollutants along the National Road N2 in Togo using the AERMOD dispersion model. Journal of Health and Pollution, 10(27).

  • Aziable, E., Tchegueni, S., Bodjona, M. B., Degbe, A. K., Zamama, M., Hafidi, M., Meray, M. E., & Kili K. A. (2017a). Valorization of agro-industrial waste by bio-process aerobic “composting”. Journal of Materials and Environmental Sciences (JMES, 2017) Volume 8, Issue 4, Page 1277–1283. http://www.jmaterenvironsci.com. Accessed 2 June 2021.

  • Aziable, E., Tchegueni, S., Bodjona, M. B., Degbe, A. K., Hafidi, M., Meray, M. E., & Kili K. A. (2017b). Physicochemical characterization of soils around the processing plant of phosphate of Kpémé in Togo. Moroccan Journal of Chemistry ISSN: 2351–812X.

  • Billah, M. M., Kokushi, E., & Uno, S. (2019). Distribution, geochemical speciation, and bioavailable potencies of cadmium, copper, lead, and zinc in sediments from urban coastal environment in Osaka Bay, Japan. Water Air Soil Pollution, 230, 157. https://doi.org/10.1007/s11270-019-4196-8

    Article  CAS  Google Scholar 

  • Chen, M., & Graedel, T. E. (2015). The potential for mining trace elements from phosphate rock. Journal of Cleaner Production, 91, 337–346.

    Article  CAS  Google Scholar 

  • Chowdhury, R., Favas, P. J. C., Pratas, J., Jonathan, M. P., Ganesh, P. S., & Sarkar, S. K. (2015). Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation. International Journal of Phytoremediation, 17, 885–894.

    Article  CAS  Google Scholar 

  • Cieślik, B. M., Namieśnik, J., & Konieczka, P. (2015). Review of sewage sludge management: Standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1–15.

    Article  CAS  Google Scholar 

  • Compaore, W. F., Dumoulin, A., & Rousseau, D. P. L. (2019). Gold Mine Impact on Soil Quality, Youga, Southern Burkina Faso, West Africa. Water Air Soil Pollution, 230, 207. https://doi.org/10.1007/s11270-019-4257-z

    Article  CAS  Google Scholar 

  • De Silva, S., Ball, A. S., Huynh, T., et al. (2016). Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environmental Pollution, 208, 102–109. https://doi.org/10.1016/j.envpol.2015.09.032

    Article  CAS  Google Scholar 

  • Demirak, A., Yilmaz, F., Tuna, A. L., et al. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63, 1451–1458. https://doi.org/10.1016/j.chemosphere.2005.09.033

    Article  CAS  Google Scholar 

  • Forkapic, S., Vasin, J., Bikit, I., et al. (2017). Correlations between soil characteristics and radioactivity content of Vojvodina soil. Journal of Environmental Radioactivity, 166, 104–111. https://doi.org/10.1016/j.jenvrad.2016.04.003

    Article  CAS  Google Scholar 

  • Gnandi, K., Tozo, K., Edorh, A. P., Abi, H., Agbeko, K., Amouzouvi, K., Gnon, B., Gado, T., Kili, K., Bouchet, P., & Akpagana, K. (2008). Bioaccumulation de certains elements métalliques dans les produits maraîchers cultivés sur les sols urbains le long de l’autoroute Lomé-Aného. Sud Togo. Acta Bot. Gallica, 115(3), 415–426.

    Article  Google Scholar 

  • Guembou, J. C. S., Ndontchueng, M. M., Nguelem, J. E. M., Chene, G., Motapon, O., Kayo, S. A. & Strivay, D. (2019). Determination of the natural radioactivity, elemental composition and geological provenance of sands from Douala in the littoral region of Cameroon using X-ray and γ-ray spectrometry. Applied Earth Science. https://doi.org/10.1080/25726838.2019.1637656.

  • Guembou, S. C. J., Ndontchueng, M. M., Nguelem, J. M. E., Motapon, O., & Strivay, D. (2021). Application of energy dispersive X-ray fluorescence, γ-ray spectrometry and multivariate statistical approach for the classification of soil/sand from Douala – Cameroon. Radiation Physics and Chemistry 188 (109589).

  • Hanfi, M. Y., Yarmoshenko, I. V., Seleznev, A. A. et al. (2019) The gross beta activity of surface sediment in different urban landscape areas. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-019-06657-9

  • Hanfi, M., & Yarmoshenko, I. (2020). Health risk assessment quantification from heavy metals contamination in the urban soil and urban surface deposited sediment. Journal of Taibah University for Science, 14(1), 285–293. https://doi.org/10.1080/16583655.2020.1735735

    Article  Google Scholar 

  • Hazou, E., Guembou, S. C. J., Nguelem, M. E. J., M. Ndontchueng M. M., Beyala Ateba, J.F., & Tchakpele, P.K. (2019). Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo. Radiat Detect Technol Methods 3. https://doi.org/10.1007/s41605-018-0091-x.

  • Hazou, E., Zorko, B., Dzagli, M. M., Haliba, E. M., Guembou Shouop, C. J., Moyo, M. N., & Tchakpele, P. K. (2021). Transfer from soil to grass and statistical analysis of natural occurring radionuclides in soil from phosphate mining and processing sites in maritime region of Togo. https://doi.org/10.21203/rs.3.rs-160904/v1

  • Hazou, E., & Patchali, T. E. (2021). Case studies in chemical and environmental engineering assessment of radiological hazards in the phosphate mining area of Kpogame, Togo. Case Studies in Chemical and Environmental Engineering, 3, 100077. https://doi.org/10.1016/j.cscee.2020.100077

    Article  Google Scholar 

  • Huang, Z., Liu, C., Zhao, X., et al. (2020). Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environmental Sciences Europe, 32, 23. https://doi.org/10.1186/s12302-020-00305-w

    Article  CAS  Google Scholar 

  • Kidd, P., Barcelo, J., Bernal, M. P., Navarri-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., & Monterosso, C. (2009). Trace element behaviour at the root-soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 67, 243–259.

    Article  CAS  Google Scholar 

  • Li, F., Zhang, J., Huang, J. et al. (2016). Heavy metals in road dust from Xiandao District, Changsha city, China: Characteristics, health risk assessment, and integrated source identification. Environmental Science and Pollution Research. 10.1007/ s11356–016–6458-y.

  • Liang, X., Song, J., Duan, L., et al. (2018). Source identification and risk assessment based on fractionation of heavy metals in surface sediments of Jiaozhou Bay, China. Marine Pollution Bulletin, 128, 548–556. https://doi.org/10.1016/j.marpolbul.2018.02.008

    Article  CAS  Google Scholar 

  • Ma, Y., Egodawatta, P., Mcgree, J., et al. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 557–558, 764–772. https://doi.org/10.1016/j.scitotenv.2016.03.067

    Article  CAS  Google Scholar 

  • Marguí, E., Queralt, M., Hidalgo, M. A. M., & Hidalgo, M. (2009). Application of X-ray fluorescence spectrometry to determination and quantification of metals in vegetal material. Trends in Analytical Chemistry, 28, 362–372.

    Article  CAS  Google Scholar 

  • Melila, M., Poutouli W., Amouzou K. S., Tchangbedji G., Tchaou M., Doh, A ., & Goto, C. (2012). Induction du stress oxydatif chez l’homme suite à la bioconcentration des elements traces metalliques (cadmium et plomb) par voie trophique à Kpémé (Sud du Togo). International Journal of Biological and Chemical Sciences. https://doi.org/10.4314/ijbcs.v6i3.29

  • Men, C., Liu, R., Xu, F., et al. (2018). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, 138–147. https://doi.org/10.1016/j.scitotenv.2017.08.123

    Article  CAS  Google Scholar 

  • Nečemer, M., Kump, P., Scancar, J., Jacimovic, J., Pelicon, P., Budnar, M., Jeran, Z., Pongrac, P., Regvar, M., & Vogel-Mikus, K. (2008). Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta, Part b: Atomic Spectroscopy, 63, 1240–1247.

    Article  CAS  Google Scholar 

  • Nečemer, M., Kosir, I. J., Kump, P., Kropf, U., Korosec, M., Bertoncelj, J., Ogrinc, N., & Golob, T. (2009). Application of total reflection X-ray spectrometry in combination with chemometric methods for determination of the botanical origin of Slovenian honey. Journal of Agriculture and Food Chemistry, 57(10), 4409–4414.

    Article  CAS  Google Scholar 

  • Nečemer, M., Kump, P., & Vogel-Mikuš, K. (2011). Use of X-ray fluorescence-based analytical techniques in phytoremediation. In I. Golubev (Ed.), Handbook of phytoremediation (Environmental science, engineering and technology) (pp. 331–358). Nova Publisher.

    Google Scholar 

  • Quiñonez-Plaza, A., Wakida, F. T., Temores-Peña, J., et al. (2017). Total petroleum hydrocarbons and heavy metals in roaddeposited sediments in Tijuana, Mexico. Journal of Soils and Sediments, 17, 2873–2886. https://doi.org/10.1007/s11368-017-1778-1

    Article  CAS  Google Scholar 

  • Seleznev, A. A., Yarmoshenko, I. V., & Sergeev, A. P. (2018). Method for reconstructing the initial baseline relationship between potentially harmful element and conservative element concentrations in urban puddle sediment. Geoderma, 326, 1–8. https://doi.org/10.1016/j.geoderma.2018.04.003

    Article  CAS  Google Scholar 

  • Seleznev, A. A., Yarmoshenko, I. V., & Malinovsky, G. P. (2019). Assessment of total amount of surface sediment in urban environment using data on solid matter content in snow-dirt sludge. Environmental Processes, 6, 581–595.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  • Tchangbedji, G., Djeteli, G., Kili, A., Savariault, M. J., & Lacoutl, J. (2003). Chimical and structural characterization of natural phosphate of Hahotoé (Togo). Bul. Chim.,Ethiop., 17(2): 1–8.

  • Trujillo-González, J. M., Torres-Mora, M. A., Jiménez-Ballesta, R. et al. (2018). Land-use-dependent spatial variation and exposure risk of heavy metals in road-deposited sediment in Villavicencio, Colombia. Environ Geochem Health;6. https://doi.org/10.1007/s10653-018-0160-6.

  • Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020) Environmental pollution: Causes, effects, and the remedies. In Microorganisms for sustainable environment and health (Vol. 21, pp. 419–429). Elsevier.

  • Wang, K., Lin, Z., & Zhang, R. (2016). Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin. China Science of the Total Environment, 543, 347–356.

    Article  CAS  Google Scholar 

  • Warnau, M., Ledent, G., Temara, A., Jangoux, M., & Dubois, P. (1995). Experimental cadmium contamination of the echinoid Paracentrotus lividus: Influence of exposure mode and distribution of the metal in the organism. Marine Ecology Progress Series, 116, 117–124.

    Article  CAS  Google Scholar 

  • WHO Europe (2009). Levels of lead in children’s blood fact sheet 4.5 (RPG4_Chem_Ex1) Copenhagen: World Health OrganizationRegional Office for Europe. Available at: https://www.euro.who.int/__data/assets/pdf_file/0003/97050/4.5.-Levels-of-leadin-childrens-blood-EDITING_layouted.pdf. Accessed 4 June 2021.

  • Wijesiri, B., Egodawatta, P., McGree, J., et al. (2015). Process variability of pollutant build-up on urban road surfaces. Science of the Total Environment, 518–519, 434–440. https://doi.org/10.1016/j.scitotenv.2015.03.014

    Article  CAS  Google Scholar 

  • Winther, M., & Slento, E. (2010). Heavy metal emissions for Danish road transport. National Environmental Research Institute, Denmark.

  • Zhang, J., Wu, J., Hua, P., et al. (2017). The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment. Environmental Pollution, 229, 705–714. https://doi.org/10.1016/j.envpol.2017.07.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their great appreciation and gratitude to Director-General of the Jožef Stefan Institute (JSI) Prof. dr. Jadran Lenarčič for the laboratory support and Mr. N’zonou Magnoudéwa for helping us during the sampling period. The authors appreciate the collaboration of population from Hahotoé-Kpogamé and Kpémé during sampling and sample collection period. We also thank the Reviewers and Editors of this paper from Journal of Water, Air, & Soil Pollution for their positive comments.

Funding

This research was funded by the International Atomic Energy Agency (IAEA) under Sandwich Training Educational Programme (STEP 2017); recipient: Mr. Eyakifama Hazou.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to achieve this manuscript.

Hazou E.: soil sample collection, preparation and data curation, methodology, investigation, writing—original draft and editing.

Zorko B.: data analysis, conceptualization, validation, and writing—review.

Nečemer M.: supervision, conceptualization, validation, and writing—review.

Haliba M. E.: conceptualization, risk assessment, methodology, and editing.

Aziable E.: statistical analysis, data curation, methodology, visualization, and editing.

Guembou S. C. J.: conceptualization, methodology, data curation, editing, and writing—review.

Tchakpele K. P.: supervision, conceptualization, validation, and writing—review.

Corresponding author

Correspondence to Eyakifama Hazou.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazou, E., Zorko, B., Nečemer, M. et al. Heavy Metal Pollution Assessment Using Energy-Dispersive X-ray Fluorescence and Multivariate Statistical Approach of Soil from Phosphate Ore Sites, Southern Region of Togo. Water Air Soil Pollut 232, 489 (2021). https://doi.org/10.1007/s11270-021-05439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05439-y

Keywords

Navigation