Skip to main content
Log in

Photocatalytic Degradation Dynamics of Methyl Orange Using Coprecipitation Synthesized Fe3O4 Nanoparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aims to investigate the photocatalytic degradation performance, mechanism, and dynamics of methyl orange (MO) which is a widely used organic dye in textile industries as well a hazardous wastewater pollutant. The degradation process was catalyzed by employing a synthesized Fe3O4 magnetic nanoparticle (NP) using the coprecipitation method. The structural and morphological properties of the synthesized Fe3O4 NPs were investigated by employing XRD, HR-SEM, and XPS, which proved that acquired Fe3O4 NPs were in a pure phase. Moreover, the crystallite sizes fall in the range of 28–31.8 nm and were estimated by applying the Scherrer equation on the XRD spectrum as well as calculated independently by applying a statistical approach on the SEM micrographs. The UV–Vis maximum in the visible range at 468.8 nm consists of two absorption frequency bands due to the effect of the hydrogen-bond interaction between water and the azo nitrogens in the MO. A non-monotonic spectral dynamic accompanied by peak wavelength shifts, as well as the absolute signal amplitude and signal area of the MO band, suggests that a cleavage of the azo bond is not the only and/or the dominant process in the photocatalytic oxidization of the MO in a protic solvent. The overall absorbance process is a complicated response to a combination of nonspecific and specific solute-solvent interactions, dipole-dipole interactions, hydrogen-bonding networks, and other possible intermolecular interactions such as hydrophobic/hydrophilic interactions. A bi-exponential decay was found to be the best fitting function to model the decay of the time-dependent electrical conductivity of the MO aqueous solution under photocatalytic oxidization. The Fe3O4 NPs exhibited a 98.3% removal of MO within 110 min. Photocatalytic degradation of methyl orange can be modeled to the first-order model with a rate constant k of 0.037 min−1 taking into account the initial concentration of 1175 ppm of MO. The degradation/decolorization efficiency deduced from the low-frequency band of the visible spectra is around 99.4% after 110 min. The real-time degradation/decolorization efficiencies deduced from the overall absorbance maxima and the low-frequency band have a discrepancy of 50.1% at 20 min and 12.3% at 60 min representing the progressive attenuation of the H-bond impact dissociation of MO (degradation/decolorization).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ababneh, R., Telfah, A., Jum’h, I., Abudayah, M., Al-Abdallat, Y., Lambert, J., & Hergenröder, R. (2018). 1H NMR spectroscopy to investigate the kinetics and the mechanism of proton charge carriers ionization and transportation in hydrophilic/hydrophobic media: methyl sulfonic acid as a protonic ion source in water/alcohol binary mixtures. Journal of Molecular Liquids, 265, 621–628.

    CAS  Google Scholar 

  • Alavi, S., Takeya, S., Ohmura, R., Woo, T. K., & Ripmeester, J. A. (2010). Hydrogen-bonding alcohol-water interactions in binary ethanol, 1-propanol, and 2 propanol+methane structure II clathrate hydrates. The Journal of Chemical Physics, 133.

  • Ali, A., Hira Zafar, M. Z., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49.

    CAS  Google Scholar 

  • Alinsafi, A., Evenou, F., Abdulkarim, E. M., Pons, M. N., Zahraa, O., Benhammou, A., Yaacoubi, A., & Nejmeddine, A. (2007). Treatment of textile industry wastewater by supported photocatalysis. Dyes and Pigments, 74, 439–445.

    CAS  Google Scholar 

  • Alqaradawi, S., & Salman, S. (2002). Photocatalytic degradation of methyl orange as a model compound. Journal of Photochemistry and Photobiology A: Chemistry, 148, 161–168.

    CAS  Google Scholar 

  • Andrade, A. L., Fabris, J., Ardisson, J., Valente, M. A., & Ferreira, J. M. F. (2012). Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles. Journal of Nanomaterials, 454, 759.

    Google Scholar 

  • Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A., & Solanki, P. R. (2017). Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Scientific Reports, 7, 7672.

    Google Scholar 

  • Barbosa, A., Bonifácio, L., & Dias, S. (2018). Wastewater reuse: case study of Abrunheira’s Industrial Water Treatment Plant, Modeling Innovation Sustainability and Technologies (pp. 311–317). Online ISBN 978–3–319-67,101-7.

  • Barreca, D., Carraro, G., Devi, A., Fois, E., Gasparotto, A., Seraglia, R., Maccato, C., Sada, C., Tabacchi, G., Tondello, E., Venzo, A., & Winter, M. (2012). β-Fe2O3 nanomaterials from an iron(II) diketonate-diamine complex: a study from molecular precursor to growth process. Dalton Transactions, 41, 149.

    CAS  Google Scholar 

  • Bauer, M., Kauf, T., Christoffers, J., & Bertagnolli, H. (2005). Investigations into the metal species of the homogeneous iron(III) catalyzed Michael addition reaction. Physical Chemistry Chemical Physics, 7, 2664–2670.

    CAS  Google Scholar 

  • Bureš, F. (2014). Fundamental aspects of property tuning in push–pull molecules. RSC Advances, 4, 58,826–58,851.

    Google Scholar 

  • Carrazana, J., Reija, B., Ramos Cabrer, P., Al-Soufi, W., Novo, M., & Tato, J. V. (2004). Complexation of methyl orange with b-cyclodextrin: detailed analysis and application to quantification of polymer-bound cyclodextrin. Supramolecular Chemistry, 16, 549–559.

    CAS  Google Scholar 

  • Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437, 640–647.

    CAS  Google Scholar 

  • Chiang, Y., & Lin, C. (2013). Powder Technology, 246, 137.

    CAS  Google Scholar 

  • Chiha, M., Merouani, S., Hamdaoui, O., Baup, S., Gondrexon, N., & Pétrier, C. (2010). Ultrasonics Sonochemistry, 17, 773.

    CAS  Google Scholar 

  • Cleland, W., & Kreevoy, M. (1994). Low-barrier hydrogen bonds an enzymic catalysis. Science, 264, 1887–1890.

    CAS  Google Scholar 

  • Dagher, S., Soliman, A., Ziout, A., Tit, N., Hilal-Alnaqbi, A., Khashan, S., Alnaimat, F., & Qudeiri, J. (2018). Materials Research Express., 5, 065518.

    Google Scholar 

  • Dannenberg, J. J. (2002). Cooperativity in hydrogen bonded aggregates. Models for crystals and peptides. Journal of Molecular Structure, 615, 219–226.

    CAS  Google Scholar 

  • Eisenberg, D., & Kauzmann, W. (1969). The structure and properties of water. Oxford: Oxford University Press.

    Google Scholar 

  • El Ghandoor, H., Zidan, H. M., Mostafa, M. H., & Khalil, M. I. M. I. (2012). Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. International Journal of Electrochemical Science, 7, 5734–5745.

    Google Scholar 

  • Fujii, T., de Groot, F. M. F., Sawatzky, G. A., Voogt, F. C., Hibma, T., & Okada, K. (1999). Physical Review B: Condensed Matter and Materials Physics, 59, 3195.

    CAS  Google Scholar 

  • Genuino, H., Mazrui, N., Seraji, M., Luo, Z., & Hoag, G. (2013). Green synthesis of iron nanomaterials for oxidative catalysis of organic environmental pollutants. In New and Future Developments in Catalysis. Catalysis for Remediation and Environmental Concerns (1st ed., pp. 41–61). Amsterdam: Elsevier.

    Google Scholar 

  • Guerra, F. D., Campbell, M. L., Whitehead, D. C., & Alexis, F. (2017). Tunable properties of functional nanoparticles for efficient capture of VOCs. ChemistrySelect., 2, 9889–9894.

    CAS  Google Scholar 

  • Guo, H., Stan, G., & Liu, Y. (2018). Soft Matter, 14, 1311.

    CAS  Google Scholar 

  • Gutierrez, A. M., Dziubla, T. D., & Hilt, J. Z. (2017). Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Reviews on Environmental Health, 32, 111–117.

    CAS  Google Scholar 

  • Handa, M., Miyamoto, H., Suzuki, T., Sawada, K., & Yukawa, Y. (1992). Solvent effects on acetylacetonato iron complexes. Inorganica Chimica Acta, 203, 61.

    Google Scholar 

  • Heidari, A., Mir, N., & Nikkaran, A. R. (2016). Phenylalanine removal from water by Fe3O4 nanoparticles functionalized with two different surfactants. J Nanostructures, 6(3), 199–206.

    CAS  Google Scholar 

  • Hibbert, F., & Emsley, J. (1990). Hydrogen bonding and chemical reactivity. Advances in Physical Organic Chemistry, 26, 255–379.

    CAS  Google Scholar 

  • Ibrahim Dar, M., & Shivashankar, S. A. (2014). Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Advances, 4, 4105.

    Google Scholar 

  • Jang, S., Hira, S. A., Annas, D., Song, S., Yusuf, M., Park, J. C., Park, S., & Park, K. H. (2019). Recent novel hybrid Pd–Fe3O4 nanoparticles as catalysts for various C–C coupling reactions. Processes, 7, 422.

    Google Scholar 

  • Jensen, M. Ø., Mouritsen, O. G., & Peters, G. H. (2004). The hydrophobic effect: molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces. The Journal of Chemical Physics, 120, 9729–9744.

    CAS  Google Scholar 

  • Jum’h, I., Abdelhay, A., Al-Taani, H., Telfah, A., Alnaief, M., & Rosiwal, S. (2017a). Fabrication and application of boron doped diamond BDD electrode in olive mill wastewater treatment in Jordan. Journal of Water Reuse and Desalination., 7, 502.

    Google Scholar 

  • Jum’h, I., Telfah, A., Lambert, J., Gogiashvili, M., Al-Taani, H., & Hergenröder, R. (2017b). 13C and 1H NMR measurements to investigate the kinetics and the mechanism of acetic acid (CH3CO2H) ionization as a model for organic acid dissociation dynamics for polymeric membrane water filtration. Journal of Molecular Liquids, 227, 106–113.

    Google Scholar 

  • Karimi, L., Zohoori, S., & Yazdanshenas, M. E. (2014). Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. Journal of Saudi Chemical Society, 18(5), 581–588.

    Google Scholar 

  • Kreevoy, M. M., & Liang, T. M. (1980). Structures and isotopic fractionation factors of complexes, A1HA-2. Journal of the American Chemical Society, 102, 3315–3322.

    CAS  Google Scholar 

  • Laage, D., & Hynes, J. T. (2006). Do more strongly hydrogen-bonded water molecules reorient more slowly. Chemical Physics Letters, 433, 80–85.

    CAS  Google Scholar 

  • Lacroix, L.-M., Delpech, F., Nayral, C., Lachaize, S., & Chaudret, B. (2013). New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging. Interface Focus, 3, 1–19.

    Google Scholar 

  • Lau, Y. Y., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., & Ong, S. A. (2015). Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Advances, 5, 34,206–34,215.

    CAS  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. (1993). Photochemical processes for water treatment. Chemical Reviews, 93, 671.

    CAS  Google Scholar 

  • Li, X., Zhang, Z., & Henrich, V. E. (1993). Inelastic electron background function for ultraviolet photoelectron spectra. Journal of Electron Spectroscopy and Related Phenomena, 63, 253–265.

    CAS  Google Scholar 

  • Liland, K., Almøy, T., & Mevik, B.-H. (2010). Optimal choice of baseline correction for multivariate calibration of spectra. Applied Spectroscopy, 64, 1007–1016.

    CAS  Google Scholar 

  • Lopez, J., González, F., Bonilla, F., Zambrano, G., & Gómez, M. (2010). RevistaLatinoamericana de Metalurgia y Materiales., 30, 60.

    Google Scholar 

  • Lops, C., Ancona, A., Di Cesare, K., Dumontel, B., Garino, N., Canavese, G., Hérnandez, S., & Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Applied Catalysis. B, Environmental, 243, 629–640.

    CAS  Google Scholar 

  • Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials (Basel)., 6, 5549–5567.

    CAS  Google Scholar 

  • Mortazavian, S., Saber, A., & James, D. E. (2019). Optimization of photocatalytic degradation of acid blue 113 dye and acid red 88 textile dyes in UV-C/TiO2 suspension system: application of response surface methodology (RSM). Catal, 9, 1–19.

    Google Scholar 

  • Namanga, J., Foba, J., Ndinteh, D. T., Yufanyi, D. M., & Krause, R. W. M. (2013, 2013). Synthesis and magnetic properties of a superparamagnetic nanocomposite “Pectin-Magnetite Nanocomposite”. Journal of Nanomaterials, 137275, 8 pages.

  • Nançoz, C., Licari, G., Beckwith, J. S., Soederberg, M., Dereka, B., Rosspeintner, A., Yushchenko, O., Letrun, R., Richert, S., Lang, B., & Vauthey, E. (2018). Physical Chemistry Chemical Physics, 20, 7254–7264.

    Google Scholar 

  • Nardo, L., Paderno, R., Andreoni, A., Másson, M., Haukvik, T., & Tønnesen, H. H. (2008). Role of H-bond formation in the photoreactivity of curcumin. Spectroscopy, 22, 187–198.

    CAS  Google Scholar 

  • Özen, A. S., Doruker, P., & Aviyente, V. (2007). Effect of cooperative hydrogen bonding in azo−hydrazone tautomerism of azo dyes. The Journal of Physical Chemistry A, 111, 51 13,506–13,514.

    Google Scholar 

  • Pacheco-Álvarez, M., Rodríguez-Narváez, O., Wrobel, K., Navarro-Mendoza, R., Nava-Montes de Oca, J., & Peralta-Hernández, J. (2018a). Improvement of the Degradation of Methyl Orange Using a TiO2/BDD Composite Electrode to Promote Electrochemical and Photoelectro-Oxidation Processes. Int. J. Electrochem. Sci., 13, 11549–11567.

  • Pacheco-Álvarez, M., Rodríguez-Narváez, O., Wrobel, K., Navarro-Mendoza, R., Nava-Montes de Oca, J., & Peralta-Hernández, J. (2018b). International Journal of Electrochemical Science, 13, 11,549.

    Google Scholar 

  • Park, H., Ayala, P., Deshusses, M., Mulchandani, A., Choi, H., & Myung, N. (2008). Electrodeposition of maghemite (γ-Fe2O3) nanoparticles. Chemical Engineering Journal, 139, 208.

    CAS  Google Scholar 

  • Reeves, R. L., Kaiser, R. S., Maggio, M. S., Sylvestre, E. A., & Lawton, W. H. (1973). Analysis of the visual spectrum of methyl orange in solvents and in hydrophobic binding sites. Canadian Journal of Chemistry, 51(4), 628–635.

    CAS  Google Scholar 

  • Reichardt, C. (1994). Solvatochromic dyes as solvent polarity indicators. Chemical Reviews, 94, 2319–2358.

    CAS  Google Scholar 

  • Revers, R. L., & Kaiser, R. S. (1972). In H. H. G. Jel-linek (Ed.), Water structure at the water-polymer interface (p. 56). New York: Plenum Press.

    Google Scholar 

  • Rizzo, L., Malato, S., Antakyali, D., Beretsou, V. G., Đolić, M. B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., & Ribeiro, A. R. L. (2019). Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment, 655, 986–1008.

    CAS  Google Scholar 

  • Ruzza, P., Hussain, R., Biondi, B., Calderan, A., Tessari, I., Bubacco, L., & Siligardi, G. (2015). Effects of trehalose on thermodynamic properties of alpha-synuclein revealed through synchrotron radiation circular dichroism. Biomolecules, 5, 724–734.

    CAS  Google Scholar 

  • Sauer, T., Neto, G., Jose, H., & Moreira, R. (2002). Journal of Photochemistry and Photobiology A: Chemistry, 149, 147.

    CAS  Google Scholar 

  • Silva, A., Santos, L. H. M. L. M., Antão, C., Delerue-Matos, C., & Figueiredo, S. A. (2017). Ecotoxicological evaluation of chemical indicator substances present as micropollutants in laboratory wastewaters. Global NEST Journal, 19, 94–99.

    CAS  Google Scholar 

  • Sun, S., & Zheng, H. (2002). Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124, 8204–8205.

    CAS  Google Scholar 

  • Tzitzi, M., Vayenas, D. V., & Lyberatos, G. (1994). Pretreatment of textile industry wastewaters with ozone. Water Science and Technology, 29, 151–160.

    CAS  Google Scholar 

  • Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q., & Volinsky, A. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters, 651, 882.

    Google Scholar 

  • Xin, X., Wei, Q., Yang, B. J., Yan, L., Feng, R., Chen, G., Du, B., & Li, H. (2012). Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chemical Engineering Journal, 184, 132–140.

    CAS  Google Scholar 

  • Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16, 1193.

    CAS  Google Scholar 

  • Zysler, R., Mansilla, M., & Fiorani, D. (2004). Surface effects in α-Fe2O3 nanoparticles. The European Physical Journal B-Condensed Matter and Complex Systems, 41, 171.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the national program “Faculty for Factory” (FFF) in the University of Jordan for initiation the links with industrial sector in Jordan. The scientific and the financial support of the Deanship of Scientific Research at the German Jordanian University (Project number SNRE 2/2013) is gratefully appreciated. A sincere acknowledgement goes to the Max Planck Institute, Erlangen-Germany for granting us access to their XPS spectrometer and to the technological assistance that was offered in the characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Telfah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Abdallat, Y., Jum’h, I., Al Bsoul, A. et al. Photocatalytic Degradation Dynamics of Methyl Orange Using Coprecipitation Synthesized Fe3O4 Nanoparticles. Water Air Soil Pollut 230, 277 (2019). https://doi.org/10.1007/s11270-019-4310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4310-y

Keywords

Navigation