Skip to main content
Log in

Effects of Anthropogenic Activities on the Elemental Concentration in Surface Sediment of Oxbows

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The Upper Tisza floodplain region provides a mosaic of aquatic habitats including a series of oxbows. Inorganic contaminants can accumulate in the sediment; thus, the sediment is good indicator of the contamination of these oxbows. Our aim was to explore the effects of anthropogenic activities on the concentration of elements and also to study the influence of vegetation types on the element in surface sediment of oxbows. We studied eight oxbows: two of them were protected, four of them were used for fishing and two of them were contaminated with domestic sewage. The following elements were measured with MP-AES in surface sediment: Al, Cr, Cu, Fe, Mn, Pb and Zn. The elemental concentration was compared to the toxicity classes of Environmental Protection Agency (EPA), and the assessment of the level of toxicity was based on this comparison. We found that studied oxbows were different from each other based on the elemental concentrations of sediment using canonical discriminant analysis and analysis of variance. Based on the elemental concentration in surface sediment of oxbows, separation was also found among vegetation types. But significant difference was not found in the concentrations of elements based on vegetation types. Our results demonstrated that the anthropogenic activities had remarkable effects on the elemental concentration of surface sediment in oxbows. Our findings suggest that the sediment is useful to assess the effects of anthropogenic activities on elemental concentrations of oxbows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albers, P. H., & Camardese, M. B. (1993). Effects of acidification on metal accumulation by aquatic plants and invertebrates 1. Constructed wetlands. Environmental Toxicology and Chemistry, 12, 959–967.

    Article  CAS  Google Scholar 

  • Aulio, K. (1986). Aquatic macrophytes as indicators of heavy metal pollution. Publications of the Water Research Institute, 68, 171–174.

    CAS  Google Scholar 

  • Baudo, R., & Muntau, H. (1990). Lesser known in-place pollutants and diffuse source problems. In R. Baudo, J. Giesy, & H. Muntau (Eds.), Sediments: chemistry and toxicity of in-place pollutants (pp. 1–15). Florida: Lewis Publisher.

    Google Scholar 

  • Bengtsson, L., & Enell, M. (1986). Chemical analysis. In B. E. Berglund (Ed.), Handbook of holocene palaeoecology and palaeohydrology (pp. 423–445). Chichester: Wiley.

    Google Scholar 

  • Bentivegna, C. S., Alfano, J. E., Bugel, S. M., & Czechowicz, K. (2004). Influence of sediment characteristics on heavy metal toxicity in an urban marsh. Urban Habitats, 2, 91–111.

    Google Scholar 

  • Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., & Zaharia, S. (2003). The solid-state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595.

    Article  CAS  Google Scholar 

  • Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from south east Queensland, Australia. Chemosphere, 48, 653–663.

    Article  CAS  Google Scholar 

  • Crowder, A. (1991). Acidification, metals and macrophytes. Environmental Pollution, 71, 171–203.

    Article  CAS  Google Scholar 

  • Denny, P. (1980). Solute movement in submerged angiosperms. Biological Reviews, 55, 65–92.

    Article  CAS  Google Scholar 

  • Domokos, E., Holenda, B., Utasi, A., Rédey, Á., & Fazakas, J. (2005). Effect of long retention time in the settler on phosphorus removal from communal wastewater. Environmental Science and Pollution Research, 12, 306–309.

    Article  CAS  Google Scholar 

  • Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.

    Article  CAS  Google Scholar 

  • Gosztonyi, G., Braun, M., Prokisch, J., & Szabó, S. (2011). Examination of zinc and iron mobilization with acid treatments and the metal content of maize and stinging nettle in the active floodplain of the River Tisza. Carpathian Journal of Earth and Environmental Sciences, 6, 25–33.

    Google Scholar 

  • Greenway, M. (1993). Wetlands for waste water and wildlife—an ecologist’s perspective. Water conservation and reuse grey issues, clear solutions. Australian Water and Wastewater Association.

  • Gulyás, G., Pistás, V., Fazekas, B., & Kárpáti, Á. (2015). Heavy metal balance in a communal wastewater treatment plant. Hungarian Journal of Industry and Chemistry, 43, 1–5.

    Article  Google Scholar 

  • Harding, J. P. C., & Whitton, B. A. (1978). Zinc, cadmium and lead in water, sediments and submerged plants of the Derwent Reservoir, Northern England. Water Research, 12, 307–316.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Hiller, E., Jurkovic, L., & Sutriepka, M. (2010). Metals in the surface sediments of selected water reservoirs, Slovakia. Bulletin of Environmental Contamination and Toxicology, 84, 635–640.

    Article  CAS  Google Scholar 

  • Jackson, L. J., & Kalff, J. (1993). Patterns in metal content of submerged aquatic macrophytes: the role of plant growth form. Freshwater Biology, 29, 351–359.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Ram, D. (1997). Adsorption of lead and zinc on bed sediments of the River Kali. Water Research, 31, 154–162.

    Article  CAS  Google Scholar 

  • Kalló, D. (1995). Wastewater purification in Hungary. In D. W. Miog & F. A. Mumpton (Eds.), Natural zeolites (pp. 341–350). Brockport, New York: International community of natural zeolites.

    Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., & Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39, 179–183.

    Article  CAS  Google Scholar 

  • Lindström, M. (2001). Urban land use influences on heavy metal fluxes and surface sediment concentrations of small oxbows. Water, Air, and Soil Pollution, 126, 363–383.

    Article  Google Scholar 

  • Lukács, B. A., Dévai, G., & Tóthmérész, B. (2009). Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river (in Hungary). Phytocoenologia, 39, 287–293.

    Article  Google Scholar 

  • Lukács, B. A., Dévai, G., & Tóthmérész, B. (2011). Small scale macrophyte-environment relationship in an oxbow-lake of the Upper-Tisza valley (Hungary). Community Ecology, 12, 259–263.

    Article  Google Scholar 

  • Mishra, V. K., Upadhyay, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment, 141, 49–58.

    Article  CAS  Google Scholar 

  • Ódor, L., Horváth, I., & Fügedi, U. (1997). Low-density geochemical mapping in Hungary. Journal of Geochemical Exploration, 60, 55–66.

    Article  Google Scholar 

  • Papp, I., Braun, M., Szalóki, I., & Leermakers, M. (2007). Investigation of the effects of the Baia Borsa pollution event in the sediment of the Boroszlókert Oxbow Lake of the Tisza. Acta Geographica ac Geologica et Meteorologica Debrecina, 2, 181–186.

    Google Scholar 

  • Robinson, C. T., Tockner, K., & Ward, J. V. (2002). The fauna of dynamic riverine landscapes. Freshwater Biology, 47, 661–677.

    Article  Google Scholar 

  • Sandu, C., Puky, M., & Gorogh, Z. (2004). Water chemical characterization of upper Tisza oxbow lakes after a long flood-free period. Proceedings of the Institute of Biology, 6, 133–148.

    Google Scholar 

  • Sarmani, S., Abdullah, M. P., Baba, I., & Majid, A. A. (1992). Inventory of heavy metals and organic micropollutants in an urban water catchment drainage basin. Developments in Hydrobiology, 75, 669–674.

    Article  Google Scholar 

  • Sawidis, T., Chettri, M. K., Zachariadis, G. A., & Siratis, J. A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety, 32, 73–80.

    Article  CAS  Google Scholar 

  • Schneider, I. A. H., Rubio, J., & Smith, R. W. (1999). Effect of some mining chemicals on biosorption of Cu(II) by the nonliving biomass of the freshwater macrophyte Potamogeton lucens. Minerals Engineering, 12, 255–260.

    Article  CAS  Google Scholar 

  • Szabó, S., Szabó, G., Fodor, C., & Papp, L. (2008). Investigation of two sewage disposal sites from the aspect of environmental impacts on soil and groundwater in the County of Hajdú-Bihar (Hungary). Moravian Geographical Reports, 16, 37–45.

    Google Scholar 

  • Szabó, S., Gosztonyi, G., & Juhos, K. (2009). Az üledék nehézfémtartalmának statisztikai elemzése a Felső-Tisza hullámterén (In Hungarian). Statistical analysis of heavy metal content of sediment samples from the floodland of Tisza River. Hidrológiai Közlöny, 89, 50–54.

    Google Scholar 

  • Szabó, S., Gyosztonyi, G., Babka, B., Dócsi, N., Braun, M., Csorbai, P., Türk, G., Molnár, L. S., Bakosi, B., Szabó, G., Futó, I., Gönczy, S., Ágoston, C., Szabó, M., Szabó, G., & Prokisch, J. (2010). GIS database of the heavy metals in the floodplain of the Tisza. Studia Universitatis Vasile Goldis Seria Stiintele Vietii, 20, 97–104.

    Google Scholar 

  • Szalai, Z. (1998). Trace metal pollution and microtopography in a floodplain. Geografia Fisica e Dinamica Quaternaria, 21, 75–78.

    Google Scholar 

  • Thomas, P. R., Glover, P., & Kalaroopan, T. (1995). An evaluation of pollutant removal from secondary treated sewage effluent using a constructed wetland system. Water Science and Technology, 32, 87–93.

    Article  CAS  Google Scholar 

  • Tockner, K., & Stanford, J. A. (2002). Riverine floodplains: present state and future trends. Environmental Conservation, 29, 308–330.

    Article  Google Scholar 

  • Varga, K., Dévai, G., & Tóthmérész, B. (2013). Land use history of a floodplain area during the last 200 years in the Upper-Tisza Region (Hungary). Regional Environmental Change, 13, 1109–1118.

    Article  Google Scholar 

  • Varga, K., Szabó, S., Szabó, G., Dévai, G., & Tóthmérész, B. (2015). Improved land cover mapping using aerial photographs and satellite images. Open Geosciences, 7, 15–26.

    Google Scholar 

  • Virkanen, J. (1998). Effect of urbanization on metal deposition in the Bay of Töölönlahti, Southern Finland. Marine Pollution Bulletin, 36, 729–738.

    Article  CAS  Google Scholar 

  • Vystavna, Y., Huneau, F., Schäfer, J., Motelica-Heino, M., Blanc, G., Larrose, A., Vergeles, Y., Diadin, D., & Le Coustumer, P. (2012). Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Applied Geochemistry, 27, 2077–2087.

    Article  CAS  Google Scholar 

  • Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 57, 779–786.

    Article  CAS  Google Scholar 

  • Ward, J. V., Tockner, K., & Schiemer, F. (1999). Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research & Management, 15, 125–139.

    Article  Google Scholar 

Download references

Acknowledgments

The research was partially supported by the Internal Research Project of the University of Debrecen (E. Simon), by the TÁMOP 4.2.1./B-09/1/KONV-2010-0024 project and by the SROP-4.2.2.B-15/1/KONV20150001 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogh, Z., Harangi, S., Kundrát, J.T. et al. Effects of Anthropogenic Activities on the Elemental Concentration in Surface Sediment of Oxbows. Water Air Soil Pollut 227, 13 (2016). https://doi.org/10.1007/s11270-015-2714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2714-x

Keywords

Navigation