Skip to main content

Advertisement

Log in

Impact of Microorganisms on Arsenic Biogeochemistry: A Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microorganisms are abundant in many surface and near-surface geochemical environments. They interact with arsenic through a variety of mechanisms, including sorption, mobilisation, precipitation and redox and methylation transformation; sometimes, this is to their benefit, while other times it is to their detriment, substantially affecting the fate and transport of arsenic in the environment. Here, an attempt was made to review the current state of knowledge concerning microbial influences on arsenic transformation and retention processes at the water–solid interface with the goal to elucidate the ability of microorganisms to react with arsenic, and to quantify the role of microorganisms in the biogeochemical arsenic cycle. Such knowledge is indispensable for comprehensive understanding arsenic behaviour in the environment and support accurate assessment of the threat of arsenic contamination to human and environmental health, as well as for the development of novel technologies for arsenic bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128(3), 1120–1128.

    CAS  Google Scholar 

  • Acevedo, F., Gentina, J. C., & Garcia, N. (1998). CO2 supply in the biooxidation of an enargite–pyrite gold concentrate. Biotechnology Letters, 20(3), 257–259.

    CAS  Google Scholar 

  • Achal, V., Pan, X. L., Fu, Q. L., & Zhang, D. Y. (2012). Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178–184.

    Google Scholar 

  • Ahmann, D., Krumholz, L. R., Hemond, H. F., Lovley, D. R., & Morel, F. M. M. (1997). Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environmental Science & Technology, 31(10), 2923–2930.

    CAS  Google Scholar 

  • Ajith, N., Dalvi, A. A., Swain, K. K., Devi, P. S. R., Kalekar, B. B., Verma, R., & Reddy, A. V. R. (2013). Sorption of As(III) and As(V) on chemically synthesized manganese dioxide. Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 48(4), 422–428.

    CAS  Google Scholar 

  • Amstaetter, K., Borch, T., Larese-Casanova, P., & Kappler, A. (2010). Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH). Environmental Science & Technology, 44(1), 102–108.

    CAS  Google Scholar 

  • Anderson, M. A., Ferguson, J. F., & Gavis, J. (1976). Arsenate adsorption on amorphous aluminum hydroxide. Journal of Colloid and Interface Science, 54(3), 391–399.

    CAS  Google Scholar 

  • Arredondo, R., Garcia, A., & Jerez, C. A. (1994). Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids. Applied and Environmental Microbiology, 60(8), 2846–2851.

    CAS  Google Scholar 

  • Babechuk, M. G., Weisener, C. G., Fryer, B. J., Paktunc, D., & Maunders, C. (2009). Microbial reduction of ferrous arsenate: Biogeochemical implications for arsenic mobilization. Applied Geochemistry, 24(12), 2332–2341.

    CAS  Google Scholar 

  • Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T., Zhao, H. J., & Jolley, D. F. (2012). Investigating arsenic speciation and mobilization in sediments with DGT and DET: A mesocosm evaluation of oxic-anoxic transitions. Environmental Science & Technology, 46(7), 3981–3989.

    CAS  Google Scholar 

  • Benzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F., & Ferard, C. (2011). Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience, 343(2–3), 160–167.

    CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—A review. Part 1: Occurrence, toxicity, speciation, mobility. Acta Hydrochimica Et Hydrobiologica, 31(1), 9–18.

    CAS  Google Scholar 

  • Blodau, C., Fulda, B., Bauer, M., & Knorr, K. H. (2008). Arsenic speciation and turnover in intact organic soil mesocosms during experimental drought and rewetting. Geochimica et Cosmochimica Acta, 72(16), 3991–4007.

    CAS  Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). Arsenic immobilization by calcium arsenate formation. Environmental Science & Technology, 33(21), 3806–3811.

    CAS  Google Scholar 

  • Breed, A. W., Glatz, A., Hansford, G. S., & Harrison, S. T. L. (1996). The effect of As(III) and As(V) on the batch bioleaching of a pyrite-arsenopyrite concentrate. Minerals Engineering, 9(12), 1235–1252.

    CAS  Google Scholar 

  • Bundschuh, J., Litter, M. I., Parvez, F., Roman-Ross, G., Nicolli, H. B., Jean, J. S., Liu, C. W., Lopez, D., Armienta, M. A., Guilherme, L. R. G., Cuevas, A. G., Cornejo, L., Cumbal, L., & Toujaguez, R. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35.

    CAS  Google Scholar 

  • Burnol, A., Garrido, F., Baranger, P., Joulian, C., Dictor, M. C., Bodenan, F., Morin, G., & Charlet, L. (2007). Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: A biogeochemical model. Geochemical Transactions, 8.

  • Burton, E. D., Johnston, S. G., & Bush, R. T. (2011). Microbial sulfidogenesis in ferrihydrite-rich environments: Effects on iron mineralogy and arsenic mobility. Geochimica et Cosmochimica Acta, 75(11), 3072–3087.

    CAS  Google Scholar 

  • Burton, E. D., Johnston, S. G., & Planer-Friedrich, B. (2013). Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chemical Geology, 343, 12–24.

    CAS  Google Scholar 

  • Campbell, K. M., Malasarn, D., Saltikov, C. W., Newman, D. K., & Hering, J. G. (2006). Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environmental Science & Technology, 40(19), 5950–5955.

    CAS  Google Scholar 

  • Cantor, K. P. (1996). Arsenic in drinking water: How much is too much? Epidemiology, 7(2), 113–115.

    CAS  Google Scholar 

  • Cavalca, L., Corsini, A., Zaccheo, P., Andreoni, V., & Muyzer, G. (2013). Microbial transformations of arsenic: Perspectives for biological removal of arsenic from water. Future Microbiology, 8(6), 753–768.

    CAS  Google Scholar 

  • Cervantes, C., Ji, G. Y., Ramirez, J. L., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15(4), 355–367.

    CAS  Google Scholar 

  • Chandraprabha, M. N., & Natarajan, K. A. (2011). Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans. Journal of Biochemical Technology, 3, 257–265.

    CAS  Google Scholar 

  • Chen, P., Yan, L., Leng, F. F., Nan, W. B., Yue, X. X., Zheng, Y. N., Feng, N., & Li, H. Y. (2011). Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresource Technology, 102(3), 3260–3267.

    CAS  Google Scholar 

  • Chen, J., Qin, J., Zhu, Y.-G., de Lorenzo, V., & Rosen, B. P. (2013). Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Applied and Environmental Microbiology, 79(14), 4493–4495.

    CAS  Google Scholar 

  • Chilvers, D. C. & Peterson, P. J. (1987). Global cycling of arsenic. in T. C. Hutchinson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment (pp. 279–301). New York: Wiley.

  • Coker, V. S., Gault, A. G., Pearce, C. I., van der Laan, G., Telling, N. D., Charnock, J. M., Polya, D. A., & Lloyd, J. R. (2006). XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environmental Science & Technology, 40(24), 7745–7750.

    CAS  Google Scholar 

  • Corkhill, C. L., Wincott, P. L., Lloyd, J. R., & Vaughan, D. J. (2008). The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochimica et Cosmochimica Acta, 72(23), 5616–5633.

    CAS  Google Scholar 

  • Corsini, A., Cavalca, L., Crippa, L., Zaccheo, P., & Andreoni, V. (2010). Impact of glucose on microbial community of a soil containing pyrite cinders: Role of bacteria in arsenic mobilization under submerged condition. Soil Biology & Biochemistry, 42(5), 699–707.

    CAS  Google Scholar 

  • Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., & Marrie, T. J. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464.

    CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89(4), 713–764.

    CAS  Google Scholar 

  • Cullen, W. R., Li, H., Hewitt, G., Reimer, K. J., & Zalunardo, N. (1994). Identification of extracellular arsenical metabolites in the growth-medium of the microorganisms Apiotrichum humicola and Scopulariopsis brevicaulis. Applied Organometallic Chemistry, 8(4), 303–311.

    CAS  Google Scholar 

  • Cummings, D. E., Caccavo, F., Fendorf, S., & Rosenzweig, R. F. (1999). Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science & Technology, 33(5), 723–729.

    CAS  Google Scholar 

  • Cutting, R. S., Coker, V. S., Telling, N. D., Kimber, R. L., van der Laan, G., Pattrick, R. A. D., Vaughan, D. J., Arenholz, E., & Lloydt, J. R. (2012). Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Environmental Science & Technology, 46(22), 12591–12599.

    CAS  Google Scholar 

  • Davranche, M., Dia, A., Fakih, M., Nowack, B., Gruau, G., Ona-Nguema, G., Petitjean, P., Martin, S., & Hochreutener, R. (2013). Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study. Chemical Geology, 335, 24–35.

    CAS  Google Scholar 

  • Demergasso, C. S., Chong, G., Escudero, L., Mur, J. J. P., & Pedros-Alio, C. (2007). Microbial precipitation of arsenic sulfides in Andean salt flats. Geomicrobiology Journal, 24(2), 111–123.

    CAS  Google Scholar 

  • Dhuldhaj, U. P., Yadav, I. C., Singh, S., & Sharma, N. K. (2013). Microbial interactions in the arsenic cycle: Adoptive strategies and applications in environmental management. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 224, pp. 1–38). New York: Springer.

    Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.

    CAS  Google Scholar 

  • Dong, H. L. (2010). Mineral-microbe interactions: A review. Frontiers of Earth Science, 4(2), 127–147.

    CAS  Google Scholar 

  • Dopson, M., & Lindstrom, E. B. (1999). Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Applied and Environmental Microbiology, 65(1), 36–40.

    CAS  Google Scholar 

  • Dowdle, P. R., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Applied and Environmental Microbiology, 62(5), 1664–1669.

    CAS  Google Scholar 

  • Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: A review. Environment International, 35(8), 1243–1255.

    CAS  Google Scholar 

  • Drewniak, L., Styczek, A., Majder-Lopatka, M., & Sklodowska, A. (2008). Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environmental Pollution, 156(3), 1069–1074.

    CAS  Google Scholar 

  • Du Laing, G., Chapagain, S. K., Dewispelaere, M., Meers, E., Kazama, F., Tack, F. M. G., Rinklebe, J., & Verloo, M. G. (2009). Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium). Journal of Environmental Monitoring, 11(4), 873–881.

    Google Scholar 

  • Duquesne, K., Lebrun, S., Casiot, C., Bruneel, O., Personne, J. C., Leblanc, M., Elbaz-Poulichet, F., Morin, G., & Bonnefoy, V. (2003). Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Applied and Environmental Microbiology, 69(10), 6165–6173.

    CAS  Google Scholar 

  • Fan, H., Su, C., Wang, Y., Yao, J., Zhao, K., & Wang, G. (2008). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Journal of Applied Microbiology, 105(2), 529–539.

    CAS  Google Scholar 

  • Fantauzzi, M., Licheri, C., Atzei, D., Loi, G., Elsener, B., Rossi, G., & Rossi, A. (2011). Arsenopyrite and pyrite bioleaching: Evidence from XPS, XRD and ICP techniques. Analytical and Bioanalytical Chemistry, 401(7), 2237–2248.

    CAS  Google Scholar 

  • Fauser, P., Sanderson, H., Hedegaard, R. V., Sloth, J. J., Larsen, M. M., Krongaard, T., Bossi, R., & Larsen, J. B. (2013). Occurrence and sorption properties of arsenicals in marine sediments. Environmental Monitoring and Assessment, 185(6), 4679–4691.

    CAS  Google Scholar 

  • Fendorf, S., Michael, H. A., & van Geen, A. (2010a). Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science, 328(5982), 1123–1127.

    CAS  Google Scholar 

  • Fendorf, S., Nico, P. S., Kocar, B. D., Masue, Y. & Tufano, K. J. (2010b). Arsenic chemistry in soils and sediments. http://www.escholarship.org/uc/item/9jt907xz.

  • Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633.

    CAS  Google Scholar 

  • Frey, B., Rieder, S. R., Brunner, I., Plotze, M., Koetzsch, S., Lapanje, A., Brandl, H., & Furrer, G. (2010). Weathering-associated bacteria from the Damma glacier forefield: Physiological capabilities and impact on granite dissolution. Applied and Environmental Microbiology, 76(14), 4788–4796.

    CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160(3-4), 414–424.

    CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2–4), 109–119.

    CAS  Google Scholar 

  • Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.

    CAS  Google Scholar 

  • Gibney, B. P., & Nusslein, K. (2007). Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere, 70(2), 329–336.

    CAS  Google Scholar 

  • Gihring, T. M., Druschel, G. K., McCleskey, R. B., Hamers, R. J., & Banfield, J. F. (2001). Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations. Environmental Science & Technology, 35(19), 3857–3862.

    CAS  Google Scholar 

  • Giri, A. K., Patel, R. K., Mahapatra, S. S., & Mishra, P. C. (2013). Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research, 20(3), 1281–1291.

    CAS  Google Scholar 

  • Hasegawa, H., Rahman, M. A., Matsuda, T., Kitahara, T., Maki, T., & Ueda, K. (2009). Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes. Science of the Total Environment, 407(4), 1418–1425.

    CAS  Google Scholar 

  • Herbel, M., & Fendorf, S. (2006). Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 228(1–3), 16–32.

    CAS  Google Scholar 

  • Hippler, J., Zdrenka, R., Reichel, R. A. D., Weber, D. G., Rozynek, P., Johnen, G., Dopp, E., & Hirner, A. V. (2011). Intracellular, time-resolved speciation and quantification of arsenic compounds in human urothelial and hepatoma cells. Journal of Analytical Atomic Spectrometry, 26(12), 2396–2403.

    CAS  Google Scholar 

  • Hitchcock, A. P., Obst, M., Wang, J., Lu, Y. S., & Tyliszczak, T. (2012). Advances in the detection of As in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: Arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria. Environmental Science & Technology, 46(5), 2821–2829.

    CAS  Google Scholar 

  • Hohmann, C., Winkler, E., Morin, G., & Kappler, A. (2010). Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation. Environmental Science & Technology, 44(1), 94–101.

    CAS  Google Scholar 

  • Hohmann, C., Morin, G., Ona-Nguema, G., Guigner, J. M., Brown, G. E., & Kappler, A. (2011). Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp strain BoFeN1. Geochimica et Cosmochimica Acta, 75(17), 4699–4712.

    CAS  Google Scholar 

  • Hossain, S. M., & Anantharaman, N. (2006). Studies on bacterial growth and arsenic(III) biosorption using Bacillus subtilis. Chemical and Biochemical Engineering Quarterly, 20(2), 209–216.

    CAS  Google Scholar 

  • Huang, J.-H., & Kretzschmar, R. (2010). Sequential extraction method for speciation of arsenate and arsenite in mineral soils. Analytical Chemistry, 82(13), 5534–5540.

    CAS  Google Scholar 

  • Huang, J. H., & Matzner, E. (2006). Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochimica et Cosmochimica Acta, 70(8), 2023–2033.

    CAS  Google Scholar 

  • Huang, J.-H., & Matzner, E. (2007). Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany. Environmental Science & Technology, 41(5), 1564–1569.

    CAS  Google Scholar 

  • Huang, J.-H., Scherr, F., & Matzner, E. (2007). Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water, Air, and Soil Pollution, 182(1–4), 31–41.

    CAS  Google Scholar 

  • Huang, J.-H., Elzinga, E. J., Brechbuchl, Y., Voegelin, A., & Kretzschmar, R. (2011a). Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(Hydr)oxides. Environmental Science & Technology, 45(7), 2804–2810.

    CAS  Google Scholar 

  • Huang, J.-H., Hu, K.-N., & Decker, B. (2011b). Organic arsenic in the soil environment: Speciation, occurrence, transformation, and adsorption behavior. Water, Air, and Soil Pollution, 219(1–4), 401–415.

    CAS  Google Scholar 

  • Huang, J.-H., Voegelin, A., Pombo, S. A., Lazzaro, A., Zeyer, J., & Kretzschmar, R. (2011c). Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environmental Science & Technology, 45(18), 7701–7709.

    CAS  Google Scholar 

  • Huber, R., Sacher, M., Vollmann, A., Huber, H., & Rose, D. (2000). Respiration of arsenate and selenate by hyperthermophilic archaea. Systematic and Applied Microbiology, 23(3), 305–314.

    CAS  Google Scholar 

  • Inskeep, W. P., Macur, R. E., Harrison, G., Bostick, B. C., & Fendorf, S. (2004). Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park. Geochimica et Cosmochimica Acta, 68(15), 3141–3155.

    CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.

    CAS  Google Scholar 

  • Islam, F. S., Pederick, R. L., Gault, A. G., Adams, L. K., Polya, D. A., Charnock, J. M., & Lloyd, J. R. (2005). Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Applied and Environmental Microbiology, 71(12), 8642–8648.

    CAS  Google Scholar 

  • Ito, A., Miura, J., Ishikawa, N., & Umita, T. (2012). Biological oxidation of arsenite in synthetic groundwater using immobilised bacteria. Water Research, 46(15), 4825–4831.

    CAS  Google Scholar 

  • Jia, Y., Huang, H., Zhong, M., Wang, F. H., Zhang, L. M., & Zhu, Y. G. (2013). Microbial arsenic methylation in soil and rice rhizosphere. Environmental Science & Technology, 47(7), 3141–3148.

    CAS  Google Scholar 

  • Jiang, S., Lee, J.-H., Kim, D., Kanaly, R. A., Kim, M.-G., & Hur, H.-G. (2013). Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities. Environmental Science & Technology, 47(15), 8616–8623.

    CAS  Google Scholar 

  • Jones, C. A., Langner, H. W., Anderson, K., McDermott, T. R., & Inskeep, W. P. (2000). Rates of microbially mediated arsenate reduction and solubilization. Soil Science Society of America Journal, 64(2), 600–608.

    CAS  Google Scholar 

  • Joshi, D. N., Flora, S. J. S., & Kalia, K. (2009). Bacillus sp strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India. Journal of Hazardous Materials, 166(2–3), 1500–1505.

    CAS  Google Scholar 

  • Khokiattiwong, S., Goessler, W., Pedersen, S. N., Cox, R., & Francesconi, K. A. (2001). Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater. Applied Organometallic Chemistry, 15(6), 481–489.

    CAS  Google Scholar 

  • Kim, H. C., Lee, C. G., Park, J. A., & Kim, S. B. (2010). Arsenic removal from water using iron-impregnated granular activated carbon in the presence of bacteria. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 45(2), 177–182.

    CAS  Google Scholar 

  • Kleinert, S., Muehe, E. M., Posth, N. R., Dippon, U., Daus, B., & Kappler, A. (2011). Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal. Environmental Science & Technology, 45(17), 7533–7541.

    CAS  Google Scholar 

  • Kocar, B. D., Herbel, M. J., Tufano, K. J., & Fendorf, S. (2006). Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environmental Science & Technology, 40(21), 6715–6721.

    CAS  Google Scholar 

  • Kocar, B. D., Borch, T., & Fendorf, S. (2010). Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochimica et Cosmochimica Acta, 74(3), 980–994.

    CAS  Google Scholar 

  • Kostal, J., Yang, R., Wu, C. H., Mulchandani, A., & Chen, W. (2004). Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Applied and Environmental Microbiology, 70(8), 4582–4587.

    CAS  Google Scholar 

  • Kruger, M. C., Bertin, P. N., Heipieper, H. J., & Arsene-Ploetze, F. (2013). Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Applied Microbiology and Biotechnology, 97(9), 3827–3841.

    CAS  Google Scholar 

  • Kuehnelt, D., & Goessler, W. (2003). Organoarsenic compounds in the terrestrial environment. In P. J. Craig (Ed.), Organometallic compounds in the environment (pp. 223–275). Heidelberg: Wiley.

    Google Scholar 

  • Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., Kemner, K. M., Logan, G. A., Summons, R. E., De Stasio, G., Bond, P. L., Lai, B., Kelly, S. D., & Banfield, J. F. (2000). Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290(5497), 1744–1747.

    CAS  Google Scholar 

  • Lafferty, B. J., & Loeppert, R. H. (2005). Methyl arsenic adsorption and desorption behavior on iron oxides. Environmental Science & Technology, 39(7), 2120–2127.

    CAS  Google Scholar 

  • Langner, H. W., & Inskeep, W. P. (2000). Microbial reduction of arsenate in the presence of ferrihydrite. Environmental Science & Technology, 34(15), 3131–3136.

    CAS  Google Scholar 

  • Lee, J. H., Kim, M. G., Yoo, B. Y., Myung, N. V., Maeng, J. S., Lee, T., Dohnalkova, A. C., Fredrickson, J. K., Sadowsky, M. J., & Hur, H. G. (2007). Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp strain HN-41. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20410–20415.

    CAS  Google Scholar 

  • Lehr, C. R., Polishchuk, E., Radoja, U., & Cullen, W. R. (2003). Demethylation of methylarsenic species by Mycobacterium neoaurum. Applied Organometallic Chemistry, 17(11), 831–834.

    CAS  Google Scholar 

  • Liao, S. J., Zhou, J. X., Wang, H., Chen, X., Wang, H. F., & Wang, G. J. (2013). Arsenite oxidation using biogenic manganese oxides produced by a deep-sea manganese-oxidizing bacterium, Marinobacter sp MnI7-9. Geomicrobiology Journal, 30(2), 150–159.

    CAS  Google Scholar 

  • Liu, Q., Guo, H. M., Li, Y., & Xiang, H. (2013a). Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment. International Biodeterioration & Biodegradation, 76, 86–91.

    CAS  Google Scholar 

  • Liu, S., Hou, Y. W., & Sun, G. X. (2013b). Synergistic degradation of pyrene and volatilization of arsenic by cocultures of bacteria and a fungus. Frontiers of Environmental Science & Engineering, 7(2), 191–199.

    CAS  Google Scholar 

  • Lloyd, J. R., & Oremland, R. S. (2006). Microbial transformations of arsenic in the environment: From soda lakes to aquifers. Elements, 2(2), 85–90.

    CAS  Google Scholar 

  • Lovley, D. R., Coates, J. D., BluntHarris, E. L., Phillips, E. J. P., & Woodward, J. C. (1996). Humic substances as electron acceptors for microbial respiration. Nature, 382(6590), 445–448.

    CAS  Google Scholar 

  • Lovley, D. R., Holmes, D. E. & Nevin, K. P. (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology, Vol. 49 (pp. 219–286). London: Academic

  • Ma, Y. Q., & Lin, C. X. (2012). Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water. Journal of Hazardous Materials, 217, 238–245.

    Google Scholar 

  • Macy, J. M., Santini, J. M., Pauling, B. V., O’Neill, A. H., & Sly, L. I. (2000). Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology, 173(1), 49–57.

    CAS  Google Scholar 

  • Maeda, S., Ohki, A., Miyahara, K., Takeshita, T., & Higashi, S. (1990). Growth-characteristics and arsenic metabolism of 2 species of arsenic-tolerant bacteria. Applied Organometallic Chemistry, 4(3), 245–250.

    CAS  Google Scholar 

  • Maeda, S., Ohki, A., Miyahara, K., Naka, K., & Higashi, S. (1992). Metabolism of methylated arsenic compounds by arsenic-resistant bacteria (Klebsiella-oxytoca and Xanthomonas sp). Applied Organometallic Chemistry, 6(4), 415–420.

    CAS  Google Scholar 

  • Mailloux, B. J., Alexandrova, E., Keimowitz, A. R., Wovkulich, K., Freyer, G. A., Herron, M., Stolz, J. F., Kenna, T. C., Pichler, T., Polizzotto, M. L., Dong, H. L., Bishop, M., & Knappett, P. S. K. (2009). Microbial mineral weathering for nutrient acquisition releases arsenic. Applied and Environmental Microbiology, 75(8), 2558–2565.

    CAS  Google Scholar 

  • Malasarn, D., Saltikov, W., Campbell, K. M., Santini, J. M., Hering, J. G., & Newman, D. K. (2004). arrA is a reliable marker for As(V) respiration. Science, 306(5695), 455–455.

    CAS  Google Scholar 

  • Malasarn, D., Keeffe, J. R., & Newman, D. K. (2008). Characterization of the arsenate respiratory reductase from Shewanella sp strain ANA-3. Journal of Bacteriology, 190(1), 135–142.

    CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1), 201–235.

    CAS  Google Scholar 

  • Marquez, M. A., Ospina, J. D., & Morales, A. L. (2012). New insights about the bacterial oxidation of arsenopyrite: A mineralogical scope. Minerals Engineering, 39, 248–254.

    CAS  Google Scholar 

  • Martinez-Villegas, N., Briones-Gallardo, R., Ramos-Leal, J. A., Avalos-Borja, M., Castanon-Sandoval, A. D., Razo-Flores, E., & Villalobos, M. (2013). Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environmental Pollution, 176, 114–122.

    CAS  Google Scholar 

  • Masue-Slowey, Y., Loeppert, R. H., & Fendorf, S. (2011). Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: Implications for As retention. Geochimica et Cosmochimica Acta, 75(3), 870–886.

    CAS  Google Scholar 

  • Matlakowska, R., Drewniak, L., & Sklodowska, A. (2008). Arsenic-hypertolerant Pseudomonads isolated from ancient gold and copper-bearing black shale deposits. Geomicrobiology Journal, 25(7–8), 357–362.

    CAS  Google Scholar 

  • McBride, B. C., & Wolfe, R. S. (1971). Biosynthesis of dimethylarsine by methanobacterium. Biochemistry, 10, 4312–4317.

    CAS  Google Scholar 

  • McKnight-Whitford, A., Chen, B. W., Naranmandura, H., Zhu, C., & Le, X. C. (2010). New method and detection of high concentrations of monomethylarsonous acid detected in contaminated groundwater. Environmental Science & Technology, 44(15), 5875–5880.

    CAS  Google Scholar 

  • McNeill, L. S., & Edwards, M. (1997). Arsenic removal during precipitative softening. Journal of Environmental Engineering-Asce, 123(5), 453–460.

    CAS  Google Scholar 

  • Meng, X. G., Jing, C. Y. & Korfiatis, G. P. (2003). A review of redox transformation of arsenic in aquatic environments. In Y. Cai & O. C. Braids (Eds.), Biogeochemistry of Environmentally Important Trace Elements, Vol. 835 (pp. 70–83). Washington, DC: ACS Publications

  • Mestrot, A., Merle, J. K., Broglia, A., Feldmann, J., & Krupp, E. M. (2011). Atmospheric stability of arsine and methylarsines. Environmental Science & Technology, 45(9), 4010–4015.

    CAS  Google Scholar 

  • Mestrot, A., Planer-Friedrich, B., & Feldmann, J. (2013). Biovolatilisation: A poorly studied pathway of the arsenic biogeochemical cycle. Environmental Science: Processes & Impacts, 15(9), 1639–1651.

    CAS  Google Scholar 

  • Meyer, J., Michalke, K., Kouril, T., & Hensel, R. (2008). Volatilisation of metals and metalloids: An inherent feature of methanoarchaea? Systematic and Applied Microbiology, 31(2), 81–87.

    CAS  Google Scholar 

  • Meyer-Dombard, D. R., Amend, J. P., & Osburn, M. R. (2013). Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea). Chemical Geology, 348, 37–47.

    CAS  Google Scholar 

  • Michalke, K., Wickenheiser, E. B., Mehring, M., Hirner, A. V., & Hensel, R. (2000). Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Applied and Environmental Microbiology, 66(7), 2791–2796.

    CAS  Google Scholar 

  • Millward, G. E., Kitts, H. J., Comber, S. D. W., Ebdon, L., & Howard, A. G. (1996). Methylated arsenic in the southern North Sea. Estuarine, Coastal and Shelf Science, 43(1), 1–18.

    CAS  Google Scholar 

  • Miyatake, M., & Hayashi, S. (2011). Characteristics of arsenic removal by Bacillus cereus Strain W2. Resources Processing, 58(3), 101–107.

    Google Scholar 

  • Mukai, H., Ambe, Y., Muku, T., Takeshita, K., & Fukuma, T. (1986). Seasonal-variation of methylarsenic compounds in airborne particulate matter. Nature, 324(6094), 239–241.

    CAS  Google Scholar 

  • Mukhopadhyay, R., Rosen, B. P., Pung, L. T., & Silver, S. (2002). Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiology Reviews, 26(3), 311–325.

    CAS  Google Scholar 

  • Nair, A., Juwarkar, A. A., & Singh, S. K. (2007). Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water, Air, and Soil Pollution, 180(1–4), 199–212.

    CAS  Google Scholar 

  • Newman, D. K., Beveridge, T. J., & Morel, F. M. M. (1997a). Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Applied and Environmental Microbiology, 63(5), 2022–2028.

    CAS  Google Scholar 

  • Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. R., & Morel, F. M. M. (1997b). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Archives of Microbiology, 168(5), 380–388.

    CAS  Google Scholar 

  • Newman, D. K., Ahmann, D., & Morel, F. M. M. (1998). A brief review of microbial arsenate respiration. Geomicrobiology Journal, 15(4), 255–268.

    CAS  Google Scholar 

  • Nordstrom, D. K. (2002). Public health—Worldwide occurrences of arsenic in ground water. Science, 296(5576), 2143–2145.

    CAS  Google Scholar 

  • O’Day, P. A., Vlassopoulos, D., Root, R., & Rivera, N. (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences of the United States of America, 101(38), 13703–13708.

    Google Scholar 

  • Ohtsuka, T., Yamaguchi, N., Makino, T., Sakurai, K., Kimura, K., Kudo, K., Homma, E., Dong, D. T., & Amachi, S. (2013). Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp OR-1. Environmental Science & Technology, 47(12), 6263–6271.

    CAS  Google Scholar 

  • Omoregie, E. O., Couture, R.-M., Van Cappellen, P., Corkhill, C. L., Charnock, J. M., Polya, D. A., Vaughan, D., Vanbroekhoven, K., & Lloyd, J. R. (2013). Arsenic bioremediation by biogenic iron oxides and sulfides. Applied and Environmental Microbiology, 79(14), 4325–4335.

    CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939–944.

    CAS  Google Scholar 

  • Ozaki, T., Wang, X. X., & Ohnuki, T. (2013). Manganese and arsenic oxidation performance of bacterium-yunotaki 86 (by86) from Hokkaido, Japan, and the bacterium’s phylogeny. Geomicrobiology Journal, 30(7), 559–565.

    CAS  Google Scholar 

  • Paez-Espino, D., Tamames, J., de Lorenzo, V., & Canovas, D. (2009). Microbial responses to environmental arsenic. Biometals, 22(1), 117–130.

    CAS  Google Scholar 

  • Palmer, N. E., & von Wandruszka, R. (2010). Humic acids as reducing agents: The involvement of quinoid moieties in arsenate reduction. Environmental Science and Pollution Research, 17(7), 1362–1370.

    CAS  Google Scholar 

  • Parke, E. C. (2013). What could arsenic bacteria teach us about life? Biology & Philosophy, 28(2), 205–218.

    Google Scholar 

  • Pedersen, H. D., Postma, D., & Jakobsen, R. (2006). Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta, 70(16), 4116–4129.

    CAS  Google Scholar 

  • Petrick, J. S., Ayala-Fierro, F., Cullen, W. R., Carter, D. E., & Aposhian, H. V. (2000). Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology, 163(2), 203–207.

    CAS  Google Scholar 

  • Poli, A., Di Donato, P., Abbamondi, G. R. & Nicolaus, B. (2011). Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea-an International Microbiological Journal, 2011, 693253.

  • Prasad, K. S., Srivastava, P., Subramanian, V., & Paul, J. (2011). Biosorption of As(III) ion on Rhodococcus sp WB-12: Biomass characterization and kinetic studies. Separation Science and Technology, 46(16), 2517–2525.

    CAS  Google Scholar 

  • Qin, J., Rosen, B. P., Zhang, Y., Wang, G. J., Franke, S., & Rensing, C. (2006). Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2075–2080.

    CAS  Google Scholar 

  • Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science & Technology, 32(3), 344–349.

    CAS  Google Scholar 

  • Robins, R. G. (1981). The solubility of metal arsenates. Metallurgical Transactions B-Process Metallurgy, 12(1), 103–109.

    Google Scholar 

  • Saalfield, S. L., & Bostick, B. C. (2009). Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environmental Science & Technology, 43(23), 8787–8793.

    CAS  Google Scholar 

  • Senn, D. B., & Hemond, H. F. (2002). Nitrate controls on iron and arsenic in an urban lake. Science, 296(5577), 2373–2376.

    CAS  Google Scholar 

  • Shah, D., Shen, M. W. Y., Chen, W., & Da Silva, N. A. (2010). Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p. Journal of Biotechnology, 150(1), 101–107.

    CAS  Google Scholar 

  • Shariatpanahi, M., Anderson, A. C., Abdelghani, A. A., Englande, A. J., Hughes, J., & Wilkinson, R. F. (1981). Biotransformation of the pesticide sodium arsenate. Journal of Environmental Science and Health Part B—Pesticides Food Contaminants and Agricultural Wastes, 16(1), 35–47.

    CAS  Google Scholar 

  • Shariatpanahi, M., Anderson, A. C., Abdelghani, A. A., & Englande, A. J. (1983). Microbial metabolism of an organic arsenical herbicide. In T. A. Oxley & S. Barry (Eds.), Biodeterioration (pp. 268–277). Chichester: Wiley.

    Google Scholar 

  • Sierra-Alvarez, R., Yenal, U., Field, J. A., Kopplin, M., Gandolfi, A. J., & Garbarino, J. R. (2006). Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid. Journal of Agricultural and Food Chemistry, 54(11), 3959–3966.

    CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 71(2), 599–608.

    CAS  Google Scholar 

  • Singh, S., Kang, S. H., Lee, W., Mulchandani, A., & Chen, W. (2010). Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E-coli. Biotechnology and Bioengineering, 105(4), 780–785.

    CAS  Google Scholar 

  • Slyemi, D., & Bonnefoy, V. (2012). How prokaryotes deal with arsenic. Environmental Microbiology Reports, 4(6), 571–586.

    CAS  Google Scholar 

  • Smeaton, C. M., Walshe, G. E., Smith, A. M. L., Hudson-Edwards, K. A., Dubbin, W. E., Wright, K., Beale, A. M., Fryer, B. J., & Weisener, C. G. (2012). Simultaneous release of Fe and As during the reductive dissolution of Pb–As jarosite by Shewanella putrefaciens CN32. Environmental Science & Technology, 46(23), 12823–12831.

    CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    CAS  Google Scholar 

  • Srivastava, P. K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N., & Tripathi, R. D. (2011). Biological removal of arsenic pollution by soil fungi. Science of the Total Environment, 409(12), 2430–2442.

    CAS  Google Scholar 

  • Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23(5), 615–627.

    CAS  Google Scholar 

  • Stolz, J. F., Basu, P., & Oremland, R. S. (2002). Microbial transformation of elements: The case of arsenic and selenium. International Microbiology, 5, 201–207.

    CAS  Google Scholar 

  • Stolz, J. E., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. Annual Review of Microbiology, 60, 107–130.

    CAS  Google Scholar 

  • Su, S. M., Zeng, X. B., Li, L. F., Duan, R., Bai, L. Y., Li, A. G., Wang, J., & Jiang, S. (2012). Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12 F1, Penicillium janthinellum SM-12 F4, and Fusarium oxysporum CZ-8 F1 investigated with X-ray absorption near edge structure. Journal of Hazardous Materials, 243, 364–367.

    CAS  Google Scholar 

  • Sun, W. (2008). Microbial oxidation of arsenite in anoxic environments: Impacts on arsenic mobility. Tuczon: The University of Arizona.

  • Sun, W. J., Sierra-Alvarez, R., Milner, L., Oremland, R., & Field, J. A. (2009). Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments. Environmental Science & Technology, 43(17), 6585–6591.

    CAS  Google Scholar 

  • Tadanier, C. J., Schreiber, M. E., & Roller, J. W. (2005). Arsenic mobilization through microbially mediated deflocculation of ferrihydrite. Environmental Science & Technology, 39(9), 3061–3068.

    CAS  Google Scholar 

  • Taillefert, M., Beckler, J. S., Carey, E., Burns, J. L., Fennessey, C. M., & DiChristina, T. J. (2007). Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. Journal of Inorganic Biochemistry, 101(11–12), 1760–1767.

    CAS  Google Scholar 

  • Takeuchi, M., Kawahata, H., Gupta, L. P., Kita, N., Morishita, Y., Ono, Y., & Komai, T. (2007). Arsenic resistance and removal by marine and non-marine bacteria. Journal of Biotechnology, 127(3), 434–442.

    CAS  Google Scholar 

  • Tamaki, S., & Frankenberger, W. T. (1992). Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, 124, 79–110.

    CAS  Google Scholar 

  • Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K., & Soma, M. (2004). Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2. Environmental Science & Technology, 38(24), 6618–6624.

    CAS  Google Scholar 

  • Thanabalasingam, P., & Pickering, W. F. (1986). Arsenic sorption by humic acids. Environmental Pollution Series B-Chemical and Physical, 12(3), 233–246.

    CAS  Google Scholar 

  • Tomczyk-Żak, K., Kaczanowski, S., Drewniak, Ł., Dmoch, Ł., Sklodowska, A., & Zielenkiewicz, U. (2013). Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Science of the Total Environment, 461–462, 330–340.

    Google Scholar 

  • Toner, B., Manceau, A., Webb, S. M., & Sposito, G. (2006). Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica et Cosmochimica Acta, 70(1), 27–43.

    CAS  Google Scholar 

  • Torsvik, V., Ovreas, L., & Thingstad, T. F. (2002). Prokaryotic diversity—Magnitude, dynamics, and controlling factors. Science, 296(5570), 1064–1066.

    CAS  Google Scholar 

  • Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659–667.

    CAS  Google Scholar 

  • Tufano, K. J., & Fendorf, S. (2008). Confounding impacts of iron reduction on arsenic retention. Environmental Science & Technology, 42(13), 4777–4783.

    CAS  Google Scholar 

  • Tufano, K. J., Reyes, C., Saltikov, C. W., & Fendorf, S. (2008). Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 42(22), 8283–8289.

    CAS  Google Scholar 

  • Turpeinen, R., Pantsar-Kallio, M., Haggblom, M., & Kairesalo, T. (1999). Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Science of the Total Environment, 236(1–3), 173–180.

    CAS  Google Scholar 

  • Vahidnia, A., Van der Voet, G. B., & de Wolf, F. A. (2007). Arsenic neurotoxicity—A review. Human & Experimental Toxicology, 26(10), 823–832.

    CAS  Google Scholar 

  • van Hullebusch, E. D., Zandvoort, M. H., & Lens, P. N. L. (2003). Metal immobilisation by biofilms: Mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology, 2, 9–33.

    Google Scholar 

  • Wang, S. L., & Zhao, X. Y. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management, 90(8), 2367–2376.

    CAS  Google Scholar 

  • Weng, L. P., Van Riemsdijk, W. H., & Hiemstra, T. (2009). Effects of fulvic and humic acids on arsenate adsorption to goethite: Experiments and modeling. Environmental Science & Technology, 43(19), 7198–7204.

    CAS  Google Scholar 

  • Williams, G. P., Gnanadesigan, M., & Ravikumar, S. (2013). Biosorption and bio-kinetic properties of solar saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ Metals. Geomicrobiology Journal, 30(6), 497–500.

    CAS  Google Scholar 

  • Wolfe-Simon, F., Blum, J. S., Kulp, T. R., Gordon, G. W., Hoeft, S. E., Pett-Ridge, J., Stolz, J. F., Webb, S. M., Weber, P. K., Davies, P. C. W., Anbar, A. D., & Oremland, R. S. (2011). A bacterium that can grow by using arsenic instead of phosphorus. Science, 332(6034), 1163–1166.

    CAS  Google Scholar 

  • Wu, J. (2005). A comparative study of arsenic methylation in a plant, yeast and bacterium. Wollongong: The University of Wollongong.

  • Wuerfel, O., Thomas, F., Schulte, M. S., Hensel, R., & Diaz-Bone, R. A. (2012). Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: A side reaction of methanogenesis. Applied Organometallic Chemistry, 26(2), 94–101.

    CAS  Google Scholar 

  • Xie, Z. M., Luo, Y., Wang, Y. X., Xie, X. J., & Su, C. L. (2013). Arsenic resistance and bioaccumulation of an indigenous bacterium isolated from aquifer sediments of Datong Basin, Northern China. Geomicrobiology Journal, 30(6), 549–556.

    CAS  Google Scholar 

  • Yamamura, S., Watanabe, M., Kanzaki, M., Soda, S., & Ike, M. (2008). Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone. Environmental Science & Technology, 42(16), 6154–6159.

    CAS  Google Scholar 

  • Yan, L., Yin, H. H., Zhang, S., Leng, F. F., Nan, W. B., & Li, H. Y. (2010). Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. Journal of Hazardous Materials, 178(1–3), 209–217.

    CAS  Google Scholar 

  • Yang, S. I., Lawrence, J. R., Swerhone, G. D. W., & Pickering, I. J. (2011). Biotransformation of selenium and arsenic in multi-species biofilm. Environmental Chemistry, 8(6), 543–551.

    CAS  Google Scholar 

  • Yang, T., Chen, M. L., Liu, L. H., Wang, J. H., & Dasgupta, P. K. (2012). Iron(III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environmental Science & Technology, 46(4), 2251–2256.

    CAS  Google Scholar 

  • Ying, S. C., Kocar, B. D., Griffis, S. D., & Fendorf, S. (2011). Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning. Environmental Science & Technology, 45(13), 5572–5579.

    CAS  Google Scholar 

  • Ying, S. C., Kocar, B. D., & Fendorf, S. (2012). Oxidation and competitive retention of arsenic between iron- and manganese oxides. Geochimica et Cosmochimica Acta, 96, 294–303.

    CAS  Google Scholar 

  • Ying, S. C., Masue-Slowey, Y., Kocar, B. D., Griffis, S. D., Webb, S., Marcus, M. A., Francis, C. A., & Fendorf, S. (2013). Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochimica et Cosmochimica Acta, 104, 29–41.

    CAS  Google Scholar 

  • Yoshinaga, M., Cai, Y., & Rosen, B. P. (2011). Demethylation of methylarsonic acid by a microbial community. Environmental Microbiology, 13(5), 1205–1215.

    CAS  Google Scholar 

  • Yuan, C. G., Lu, X. F., Qin, J., Rosen, B. P., & Le, X. C. (2008). Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environmental Science & Technology, 42(9), 3201–3206.

    CAS  Google Scholar 

  • Zhang, J. H., Zhang, X., Ni, Y. Q., Yang, X. J., & Li, H. Y. (2007). Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochemistry, 42(9), 1265–1271.

    CAS  Google Scholar 

  • Zheng, R. L., Sun, G. X., & Zhu, Y. G. (2013). Effects of microbial processes on the fate of arsenic in paddy soil. Chinese Science Bulletin, 58(2), 186–193.

    CAS  Google Scholar 

  • Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 34(22), 4747–4753.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Swiss National Science Foundation (PZ00P2_142232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-How Huang.

Appendix 1

Appendix 1

Table 5 Minerals and their chemical formulas mentioned in this review

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JH. Impact of Microorganisms on Arsenic Biogeochemistry: A Review. Water Air Soil Pollut 225, 1848 (2014). https://doi.org/10.1007/s11270-013-1848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1848-y

Keywords

Navigation