Skip to main content
Log in

How to Compare Noisy Patches? Patch Similarity Beyond Gaussian Noise

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Many tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches (so-called image-based) compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change detection or denoising. Recent progress in natural image modeling also makes intensive use of patch comparison.

A fundamental difficulty when comparing two patches from “real” data is to decide whether the differences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption leads to the classical definition of patch similarity based on the squared differences of intensities. For the case where noise departs from the Gaussian distribution, several similarity criteria have been proposed in the literature of image processing, detection theory and machine learning.

By expressing patch (dis)similarity as a detection test under a given noise model, we introduce these criteria with a new one and discuss their properties. We then assess their performance for different tasks: patch discrimination, image denoising, stereo-matching and motion-tracking under gamma and Poisson noises. The proposed criterion based on the generalized likelihood ratio is shown to be both easy to derive and powerful in these diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alter, F., Matsushita, Y., & Tang, X. (2006). An intensity similarity measure in low-light conditions. Lecture Notes in Computer Science, 3954, 267.

    Article  Google Scholar 

  • Baxter, J. (1995). Learning internal representations. In Proceedings of the eighth annual conference on computational learning theory (pp. 311–320). New York: ACM.

    Chapter  Google Scholar 

  • Baxter, J., & Bartlett, P. (1998). The canonical distortion measure in feature space and 1-nn classification. In Advances in neural information processing systems 10: proceedings of the 1997 conference (Vol. 10, p. 245). Cambridge: MIT Press.

    Google Scholar 

  • Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J., & Salamero, J. (2010). Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Transactions on Medical Imaging, 29(2), 442–454.

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (1998). Markov random fields with efficient approximations. In Computer vision and pattern recognition, 1998. Proceedings. 1998 IEEE computer society conference on (pp. 648–655). New York: IEEE.

    Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1222–1239.

  • Brown, L., Cai, T., Zhang, R., Zhao, L., & Zhou, H. (2010). The root–unroot algorithm for density estimation as implemented via wavelet block thresholding. Probability Theory and Related Fields, 146(3), 401–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. (2005a). a non-local algorithm for image denoising. In Proc. IEEE computer society conf. CVPR (Vol. 2, pp. 60–65).

    Google Scholar 

  • Buades, A., Coll, B., & Morel, J. (2005b). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490.

    Article  MathSciNet  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. M. (2009). Non-local means denoising. Image Processing on Line http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/.

  • Chen, J., Chen, Y., An, W., Cui, Y., & Yang, J. (2011). Nonlocal filtering for polarimetric sar data: a pretest approach. IEEE Transactions on Geoscience and Remote Sensing, 49(5), 1744–1754.

    Article  Google Scholar 

  • Cho, T., Avidan, S., & Freeman, W. (2009). The patch transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1489–1501.

  • Comaniciu, D., Ramesh, V., & Meer, O. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 564–577.

  • Criminisi, A., Pérez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212.

    Article  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080.

    Article  MathSciNet  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2008). A nonlocal and shape-adaptive transform-domain collaborative filtering. In Int. workshop on local and non-local approximation in image processing, LNLA.

    Google Scholar 

  • Deledalle, C., Denis, L., & Tupin, F. (2009a). Débruitage non-local itératif fondé sur un critère de similarité probabiliste. In Proceedings of GRETSI Dijon, France, September 2009.

    Google Scholar 

  • Deledalle, C., Denis, L., & Tupin, F. (2009b). Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Transactions on Image Processing, 18(12), 2661–2672. doi:10.1109/TIP.2009.2029593.

    Article  MathSciNet  Google Scholar 

  • Deledalle, C., Tupin, F., & Denis, L. (2010). Poisson NL means: unsupervised non local means for Poisson noise. In Image processing (ICIP), 2010 17th IEEE international conference on (pp. 801–804). New York: IEEE.

    Chapter  Google Scholar 

  • Deledalle, C., Denis, L., & Tupin, F. (2011a). NL-InSAR: non-local interferogram estimation. IEEE Transaction on Geoscience and Remote Sensing, 49, 4.

    Google Scholar 

  • Deledalle, C. A., Duval, V., & Salmon, J. (2011b). Non-local methods with shape-adaptive patches (NLM-SAP). Journal of Mathematical Imaging and Vision, 1–18.

  • Deledalle, C. A., Tupin, F., & Denis, L. (2011c). Patch similarity under non-Gaussian noise. In Image processing (ICIP), 18th IEEE international conference on. New York: IEEE.

    Google Scholar 

  • Efros, A., & Freeman, W. (2001). Image quilting for texture synthesis and transfer. In Proceedings of the 28th annual conference on computer graphics and interactive techniques (pp. 341–346). New York: ACM.

    Google Scholar 

  • Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  • Freeman, W., Jones, T., & Pasztor, E. (2002). Example-based super-resolution. IEEE Computer Graphics and Applications, 56–65.

  • Gilboa, G., & Osher, S. (2008). Nonlocal linear image regularization and supervised segmentation. Multiscale Modeling and Simulation, 6(2), 595–630.

    Article  MathSciNet  Google Scholar 

  • Goodman, J. (1976). Some fundamental properties of speckle. Journal of the Optical Society of America, 66(11), 1145–1150.

    Article  Google Scholar 

  • Hartley, R., & Zisserman, A. (2000). Multiple view geometry, Vol. 642. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17(1–3), 185–203.

    Article  Google Scholar 

  • Hudson, H. M. (1978). A natural identity for exponential families with applications in multiparameter estimation. Annals of Statistics, 6(3), 473–484.

    Article  MathSciNet  MATH  Google Scholar 

  • Hyvärinen, A., Hurri, J., & Hoyer, P. (2009). Natural image statistics: a probabilistic approach to early computational vision. New York: Springer.

    MATH  Google Scholar 

  • Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1333–1336.

  • Jain, A. (1989). Fundamentals of digital image processing. Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  • Katkovnik, V., Foi, A., Egiazarian, K., & Astola, J. (2010). From local kernel to nonlocal multiple-model image denoising. International Journal of Computer Vision, 86(1), 1–32.

    Article  MathSciNet  Google Scholar 

  • Kay, S. (1998). Fundamentals of statistical signal processing. Volume 2: Detection theory. New York: Prentice Hall.

    Google Scholar 

  • Kendall, M., & Stuart, A. (1979). The advanced theory of statistics. Vol. 2: Inference and relationship. London: Charles Griffin and Co, Ltd.

    Google Scholar 

  • Kervrann, C., & Boulanger, J. (2008). Local adaptivity to variable smoothness for exemplar-based image regularization and representation. International Journal of Computer Vision, 79(1), 45–69.

    Article  Google Scholar 

  • Kervrann, C., Boulanger, J., & Coupé, P. (2007). Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In Proceedings of the 1st international conference on scale space and variational methods in computer vision (pp. 520–532). Berlin: Springer.

    Chapter  Google Scholar 

  • Kim, H., & Hero, A. III (2001). Comparison of GLR and invariant detectors under structured clutter covariance. IEEE Transactions on Image Processing, 10(10), 1509–1520.

    Article  MATH  Google Scholar 

  • Kwatra, V., Schödl, A., Essa, I., Turk, G., & Bobick, A. (2003). Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics, 22(3), 277–286.

    Article  Google Scholar 

  • Lehmann, E. (1959). Optimum invariant tests. Annals of Mathematical Statistics, 30(4), 881–884.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, L., Liu, C., Xu, Y., Guo, B., & Shum, H. (2001). Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics, 20(3), 127–150.

    Article  Google Scholar 

  • Lowe, D. (1992). Robust model-based motion tracking through the integration of search and estimation. International Journal of Computer Vision, 8(2), 113–122.

    Article  Google Scholar 

  • Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009). Non-local sparse models for image restoration. In ICCV.

    Google Scholar 

  • Mäkitalo, M., & Foi, A. (2011). Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Transactions on Image Processing, 20(1), 99–109.

    Article  MathSciNet  Google Scholar 

  • Mäkitalo, M., Foi, A., Fevralev, D., & Lukin, V. (2010). Denoising of single-look SAR images based on variance stabilization and nonlocal filters. In Proc. int. conf. math. meth. electromagn. th., MMET 2010, Kiev, Ukraine.

    Google Scholar 

  • Matsushita, Y., & Lin, S. (2007). A probabilistic intensity similarity measure based on noise distributions. In IEEE conference on computer vision and pattern recognition. CVPR’07 (pp. 1–8).

    Chapter  Google Scholar 

  • Minka, T. (1998). Bayesian inference, entropy, and the multinomial distribution (Tech. rep.), CMU.

  • Minka, T. (2000). Distance measures as prior probabilities (Tech. rep.), CMU.

  • Parrilli, S., Poderico, M., Angelino, C., Scarpa, G., & Verdoliva, L. (2010). A nonlocal approach for SAR image denoising. In Geoscience and remote sensing symposium (IGARSS) (pp. 726–729). New York: IEEE.

    Google Scholar 

  • Peyré, G., Bougleux, S., & Cohen, L. (2008). Non-local regularization of inverse problems. In Computer vision—ECCV 2008 (pp. 57–68). Berlin: Springer.

    Chapter  Google Scholar 

  • Salmon, J. (2010). On two parameters for denoising with non-local means. IEEE Signal Processing Letters, 17, 269–272.

    Article  Google Scholar 

  • Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1), 7–42.

    Article  MATH  Google Scholar 

  • Seeger, M. (2002). Covariance kernels from Bayesian generative models. In Advances in neural information processing systems 14: proceedings of the 2001 conference (p. 905). Cambridge: MIT Press.

    Google Scholar 

  • Teuber, T., & Lang, A. (2011). A new similarity measure for nonlocal filtering in the presence of multiplicative noise (Preprint). University of Kaiserslautern.

  • Van De Ville, D., & Kocher, M. (2009). SURE-based non-local means. IEEE Signal Processing Letters, 16(11), 973–976.

    Article  Google Scholar 

  • Varma, M., & Zisserman, A. (2003). Texture classification: are filter banks necessary. In Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference on (Vol. 2, pp. II–691). New York: IEEE.

    Google Scholar 

  • Yianilos, P. (1995). Metric learning via normal mixtures (Tech. rep.). NEC Research Institute, Princeton, NJ.

  • Zhang, X., Burger, M., Bresson, X., & Osher, S. (2010). Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3(3), 253–276. doi:10.1137/090746379, http://link.aip.org/link/?SII/3/253/1.

    Article  MathSciNet  MATH  Google Scholar 

  • Zitova, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Alban Deledalle.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11263_2012_519_MOESM1_ESM.pdf

Patch similarity under Gaussian, gamma, Poisson and Cauchy noise: Derivation of closed-form expression of similarity criteria, and Proof sketches of some properties (PDF 274 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deledalle, CA., Denis, L. & Tupin, F. How to Compare Noisy Patches? Patch Similarity Beyond Gaussian Noise. Int J Comput Vis 99, 86–102 (2012). https://doi.org/10.1007/s11263-012-0519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0519-6

Keywords

Navigation