Skip to main content
Log in

An Analog of the Menchov–Trokhimchuk Theorem for Monogenic Functions in a Three-Dimensional Commutative Algebra

  • Published:
Ukrainian Mathematical Journal Aims and scope

The aim of the present work is to weaken the conditions of monogeneity for functions taking values in a given three-dimensional commutative algebra over the field of complex numbers. The monogeneity of a function is understood as a combination of its continuity with the existence of Gâteaux derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Goursat, Cours d’Analyse Mathématique, vol. 2, Gauthier-Villars, Paris (1910).

  2. H. Bohr, “Über streckentreue und konforme Abbildung,” Math. Z., 1, 403–420 (1918).

    Article  MathSciNet  Google Scholar 

  3. H. Rademacher, “Über streckentreue und winkeltreue Abbildung,” Math. Z., 4, 131–138 (1919).

    Article  MathSciNet  Google Scholar 

  4. D. Menchov, “Sur les différentielles totales des fonctions univalentes,” Math. Ann., 105, 75–85 (1931).

    Article  MathSciNet  Google Scholar 

  5. D. Menchov, “Sur les fonctions monogènes,” Bull. Soc. Math. France, 59, 141–182 (1931).

    Article  MathSciNet  Google Scholar 

  6. D. Menchov, “Les conditions de monogénéité,” Act. Sci. Ind., No. 329 (1936).

  7. V. S. Fedorov, “On monogenic functions,” Mat. Sb., 42, No. 4, 485–500 (1935).

    Google Scholar 

  8. G. P. Tolstov, “On the curvilinear and iterated integral,” Tr. Mat. Inst. Akad. Nauk SSSR, 35, 3–101 (1950).

    MathSciNet  Google Scholar 

  9. Yu. Yu. Trokhimchuk, Continuous Mappings and the Conditions of Monogeneity [in Russian], Fizmatgiz, Moscow (1963).

  10. Yu. Yu. Trokhimchuk, Differentiation, Inner Mappings, and Criteria of Analyticity [in Russian], Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev (2007).

  11. G. Kh. Sindalovskii, “On the differentiability and analyticity of univalent mappings,” Dokl. Akad. Nauk SSSR, 249, No. 6, 1325–1327 (1979).

    MathSciNet  Google Scholar 

  12. G. Kh. Sindalovskii, “On the Cauchy–Riemann conditions in the class of functions with summable modulus and some boundary properties of analytic functions,” Mat. Sb., 128(170), No. 3(11), 364–382 (1985).

  13. D. S. Telyakovskii, “Generalization of one Menchov theorem on monogenic functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 53, No. 4, 886–896 (1989).

    Google Scholar 

  14. D. S. Telyakovskii, “On the holomorphy of functions specifying the mappings preserving angles,” Mat. Zametki, 56, No. 5, 149–154 (1994).

    MathSciNet  Google Scholar 

  15. D. S. Telyakovskii, “On weakening of the condition of asymptotic monogeneity,” Mat. Zametki, 60, No. 6, 902–911 (1996).

    Article  Google Scholar 

  16. D. S. Telyakovskii, “Generalization of the Menchov theorem on functions that satisfy the condition K′′,Mat. Zametki, 76, No. 4, 578–591 (2004).

    Article  MathSciNet  Google Scholar 

  17. E. P. Dolzhenko, “Works by D. E. Menchov in the theory of analytic functions and the contemporary state of the theory of monogeneity,” Usp. Mat. Nauk, 47, No. 5, 67–96 (1992).

  18. M. T. Brodovich, “On the mapping of a space domain that preserves angles and extensions along a system of rays,” Sib. Mat. Zh., 38, No. 2, 260–262 (1997).

    Article  MathSciNet  Google Scholar 

  19. A. V. Bondar’, “Multidimensional generalization of a theorem of D. E. Men’shov,” Ukr. Mat. Zh., 30, No. 4, 435–443 (1978); English translation: Ukr. Math. J., 30, No. 4, 337–343 (1978).

  20. A. V. Bondar’, Local Geometric Characteristics of Holomorphic Mappings [in Russian], Naukova Dumka, Kiev (1992).

  21. V. I. Sirik, “Some criteria for continuous mappings to be holomorphic,” Ukr. Mat. Zh., 37, No. 6, 751–756 (1985); English translation: Ukr. Math. J., 37, No. 6, 621–626 (1985).

  22. O. S. Gretskii, “On the ℂ-differentiability of mappings of Banach spaces,” Ukr. Mat. Zh., 46, No. 10, 1336–1342 (1994); English translation: Ukr. Math. J., 46, No. 10, 1472–1479 (1994).

  23. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, RI (1957).

  24. S. A. Plaksa and R. P. Pukhtaievych, “Monogenic functions in a finite-dimensional semi-simple commutative algebra,” An.Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat., 22, No. 1, 221–235 (2014).

    MathSciNet  MATH  Google Scholar 

  25. V. Shpakivskyi, “Constructive description of monogenic functions in a finite-dimensional commutative associative algebra,” Adv. Pure Appl. Math., 7, No. 1, 63–75 (2016).

    MathSciNet  MATH  Google Scholar 

  26. I. P. Mel’nichenko and S. A. Plaksa, Commutative Algebras and Space Fields [in Russian], Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev (2008).

  27. S. A. Plaksa and V. S. Shpakovskii, “Constructive description of monogenic functions in a harmonic algebra of the third rank,” Ukr. Mat. Zh., 62, No. 8, 1078–1091 (2010); English translation: Ukr. Math. J., 62, No. 8, 1251–1266 (2011).

  28. P. W. Ketchum, “Analytic functions of hypercomplex variables,” Trans. Amer. Math. Soc., 30, 641–667 (1928).

    Article  MathSciNet  Google Scholar 

  29. I. P. Mel’nichenko, “The representation of harmonic mappings by monogenic functions,” Ukr. Mat. Zh., 27, No. 5, 606–613 (1975); English translation: Ukr. Math. J., 27, No. 5, 499–505 (1975).

  30. G. Scheffers, “Verallgemeinerung der Grundlagen der gewöhnlich complexen Funktionen, I, II,” Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Phys. Kl., 45, 828–848 (1893); 46, 120–134 (1894).

  31. E. R. Lorch, “The theory of analytic function in normed Abelian vector rings,” Trans. Amer. Math. Soc., 54, 414–425 (1943).

    Article  MathSciNet  Google Scholar 

  32. S. A. Plaksa, “Commutative algebras associated with classic equations of mathematical physics,” Adv. Appl. Anal., Trends Math., 177–223 (2012).

  33. S. A. Plaksa, “Monogenic functions in commutative algebras associated with classical equations of mathematical physics,” J. Math. Sci., 242, No. 3, 432–456 (2019).

    Article  MathSciNet  Google Scholar 

  34. S. A. Plaksa, “On differentiable and monogenic functions in a harmonic algebra,” in: Proc. of the Institute of Mathematics, National Academy of Sciences of Ukraine, 14, No. 1 (2017), pp. 210–221.

  35. M. V. Tkachuk and S. A. Plaksa, An Analog of the Menchov–Trokhimchuk Theorem for Monogenic Functions in a Three-Dimensional Commutative Algebra [in Ukrainian]; e-print: arXiv:2006.12492v1 [math.CA] (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tkachuk.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 8, pp. 1120–1128, August, 2021. Ukrainian DOI: 10.37863/umzh.v73i8.6658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachuk, M.V., Plaksa, S.A. An Analog of the Menchov–Trokhimchuk Theorem for Monogenic Functions in a Three-Dimensional Commutative Algebra. Ukr Math J 73, 1299–1308 (2022). https://doi.org/10.1007/s11253-022-01991-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-01991-w

Navigation