Skip to main content
Log in

Convective Heat Transfer Between a Bead Packing and Its Bounding Wall: Part I—Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Forced convective heat transfer between fluid-saturated bead packings and the solid containing walls is important phenomena in different engineering fields. In practical applications, the volume-averaged governing equations and the use of Reynolds-Averaged Navier–Stokes (RANS) Computational Fluid Dynamics (CFD) simulations can provide a reasonable description of the averaged transport phenomena in bead packings without too much computational resources. However, it is still a challenge to treat conjugate problems because the presence of a bounding wall causes different modeling issues. Firstly, different exponential functions have been proposed for RANS CFD simulations to model the porosity variation of bead packings near the wall. These functions are usually determined by an inverse approach which solves the governing equations to approximate the physically measured flow fields (e.g., velocity, temperature). Given the variety of existing porosity models, it is difficult to select the most appropriate one in a particular case. Secondly, the volume-averaged quantities of the bead packing are incompatible with the local point quantities of the wall. This largely increases the difficulty in defining the boundary conditions at the wall. In the present work, a modeling framework is presented to simulate the forced convective heat transfer from the bead packing to its containing wall. These two critical issues are addressed by deriving volume-averaged governing equations using a non-constant Representative Elementary Volume (REV). In Part I of the article, the theoretical derivations are presented in detail. A procedure is also developed to select an appropriate porosity model from the packing microstructure. Part II of the article completes the investigation by validating the predictive capability of the derived governing equations by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Anderson, R., Shiri, S., Bindra, H., Morris, J.F.: Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles. Appl. Energy 119, 521–529 (2014)

    Article  Google Scholar 

  • Badruddin, I.A., Ahmed, N.J., Al-Rashed, A.A., Nik-Ghazali, N., Jameel, M., Kamangar, S., Khaleed, H.M., Khan, T.M.: Conjugate heat transfer in an annulus with porous medium fixed between solids. Transp Porous Media 109(3), 589–608 (2015)

    Article  Google Scholar 

  • Boyd, B., Hooman, K.: Air-cooled micro-porous heat exchangers for thermal management of fuel cells. Int. Commun. Heat Mass Transfer 39(3), 363–367 (2012)

    Article  Google Scholar 

  • Bruch, A., Fourmigué, J., Couturier, R.: Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for CSP power plant. Sol. Energy 105, 116–125 (2014)

    Article  Google Scholar 

  • Cascetta, M., Cau, G., Puddu, P., Serra, F.: A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Appl. Therm. Eng. 98, 1263–1272 (2016)

    Article  Google Scholar 

  • Cheng, P., Hsu, C.: Fully-developed, forced convective flow through an annular packed-sphere bed with wall effects. Int. J. Heat Mass Transf. 29(12), 1843–1853 (1986)

    Article  Google Scholar 

  • Clausnitzer, V., Hopmans, J.: Determination of phase-volume fractions from tomographic measurements in two-phase systems. Adv. Water Resour. 22(6), 577–584 (1999)

    Article  Google Scholar 

  • De Klerk, A.: Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 49(8), 2022–2029 (2003)

    Article  Google Scholar 

  • Demirel, Y., Abu-Al-Saud, B., Al-Ali, H., Makkawi, Y.: Packing size and shape effects on forced convection in large rectangular packed ducts with asymmetric heating. Int. J. Heat Mass Transf. 42(17), 3267–3277 (1999)

    Article  Google Scholar 

  • Du Toit, C.G.: Radial variation in porosity in annular packed beds. Nucl. Eng. Des. 238(11), 3073–3079 (2008)

    Article  Google Scholar 

  • Du Plessis, J.P., Masliyah, J.H.: Mathematical modelling of flow through consolidated isotropic porous media. Transp. Porous Media 3(2), 145–161 (1988)

    Article  Google Scholar 

  • Du Plessis, J.P., Masliyah, J.H.: Flow through isotropic granular porous media. Transp. Porous Media 6(3), 207–221 (1991)

    Article  Google Scholar 

  • Faghri, A., Zhang, Y.: 4 - GENERALIZED GOVERNING EQUATIONS FOR MULTIPHASE SYSTEMS: AVERAGING FORMULATIONS. In: Faghri, A., Zhang, Y. (eds.) Transport Phenomena in Multiphase Systems, pp. 238–330. Academic Press, Boston (2006)

    Google Scholar 

  • Gray, W.G.: Local volume averaging of multiphase systems using a non-constant averaging volume. Int. J. Multiph. Flow 9(6), 755–761 (1983)

    Article  Google Scholar 

  • Habibi, K., Mosahebi, A., Shokouhmand, H.: Heat transfer characteristics of reciprocating flows in channels partially filled with porous medium. Transp. Porous Media 89(2), 139–153 (2011)

    Article  Google Scholar 

  • Hager, J., Wimmerstedt, R., Whitaker, S.: Steam drying a bed of porous spheres: theory and experiment. Chem. Eng. Sci. 55(9), 1675–1698 (2000)

    Article  Google Scholar 

  • Hunt, M., Tien, C.: Non-Darcian flow, heat and mass transfer in catalytic packed-bed reactors. Chem. Eng. Sci. 45(1), 55–63 (1990)

    Article  Google Scholar 

  • Jiang, P.-X., Li, M., Lu, T.-J., Yu, L., Ren, Z.-P.: Experimental research on convection heat transfer in sintered porous plate channels. Int. J. Heat Mass Transf. 47(10), 2085–2096 (2004)

    Article  Google Scholar 

  • Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. Int. J. 12(2–3), 140–152 (2012)

    Article  Google Scholar 

  • Kuo, S.M., Tien, C.L.: Heat transfer augmentation in a foam-material filled duct with discrete heat sources. In: Proceedings of the InterSociety Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components. I-THERM '88, pp. 87–91 (1988)

  • Mahmoudi, Y., Hooman, K., Vafai, K.: Convective Heat Transfer in Porous Media. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  • Mertens, N., Alobaid, F., Frigge, L., Epple, B.: Dynamic simulation of integrated rock-bed thermocline storage for concentrated solar power. Sol. Energy 110, 830–842 (2014)

    Article  Google Scholar 

  • Mueller, G.E.: Radial porosity in packed beds of spheres. Powder Technol. 203(3), 626–633 (2010)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, Berlin (2006)

    Google Scholar 

  • Ochoa-Tapia, J.A.,Whitaker, S.: Heat transfer at the boundary between a porous medium and a homogeneous fluid: the one-equation model. J. Porous Media 1(1) (1998)

  • Ochoa-Tapia, J.A., Whitaker, S.: Bulk and surface diffusion in porous media: an application of the surface-averaging theorem. Chem. Eng. Sci. 48(11), 2061–2082 (1993)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Heat transfer at the boundary between a porous medium and a homogeneous fluid. Int. J. Heat Mass Transf. 40(11), 2691–2707 (1997)

    Article  Google Scholar 

  • Ridgway, K., Tarbuck, K.: Radial voidage variation in randomly-packed beds of spheres of different sizes. J. Pharm. Pharmacol. 18(S1), 168S-175S (1966)

    Google Scholar 

  • Valdés-Parada, F.J., Goyeau, B.T., Ochoa-Tapia, J.A.: Jump momentum boundary condition at a fluid–porous dividing surface: derivation of the closure problem. Chem Eng Sci 62(15), 4025–4039 (2007)

    Article  Google Scholar 

  • Van Antwerpen, W., Du Toit, C., Rousseau, P.G.: A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des. 240(7), 1803–1818 (2010)

    Article  Google Scholar 

  • Vortmeyer, D., Schuster, J.: Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method. Chem. Eng. Sci. 38(10), 1691–1699 (1983)

    Article  Google Scholar 

  • Whitaker, S.: The method of averaging. Springer, Berlin (2013)

    Google Scholar 

  • White, S., Tien, C.: Analysis of flow channeling near the wall in packed beds. Wärme-Und Stoffübertragung 21(5), 291–296 (1987)

    Article  Google Scholar 

  • Xu, C., Li, X., Wang, Z., He, Y., Bai, F.: Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system. Appl. Therm. Eng. 57(1–2), 69–80 (2013)

    Article  Google Scholar 

  • Zanoni, M.A., Torero, J.L., Gerhard, J.I.: Determination of the interfacial heat transfer coefficient between forced air and sand at Reynold’s numbers relevant to smouldering combustion. Int. J. Heat Mass Transf. 114, 90–104 (2017)

    Article  Google Scholar 

  • Zhu, J., Araya, S.S., Cui, X., Sahlin, S.L., Kær, S.K.: Modeling and design of a multi-tubular packed-bed reactor for methanol steam reforming over a Cu/ZnO/Al2O3 Catalyst. Energies 13(3), 610 (2020)

    Article  Google Scholar 

  • Zobel, N., Eppinger, T., Behrendt, F., Kraume, M.: Influence of the wall structure on the void fraction distribution in packed beds. Chem. Eng. Sci. 71, 212–219 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science & Engineering Research Council of Canada (NSERC) (Discovery Grants). Authors also gratefully acknowledge the Research Center for High Performance Polymer and Composite Systems (CREPEC) and the “Fonds de recherche du Québec—Nature et technologies” (FRQNT) for their partial financial support. Authors also express their sincere thanks to Christian-Charles Martel, technical assistant, for his support in the laboratory.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Trochu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors have participated in developing this manuscript and given their consent for submission of this manuscript for possible publication in Transport in Porous Media.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Volume-Averaged Momentum Equation

We begin our analysis by averaging Eq. 21:

$$\frac{1}{V}{\int }_{{V}_{f}}\frac{\partial }{\partial t}\left({\rho }_{f }{{\varvec{u}}}_{{\varvec{f}}}\right) \mathrm{d}V+\frac{1}{V}{\int }_{{V}_{f}}\nabla \cdot \left({\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\right) \mathrm{d}V=-\frac{1}{V}{\int }_{{V}_{f}}\nabla p \mathrm{d}V+\frac{1}{V}{\int }_{{V}_{f}}\nabla \cdot \overline{\overline{\tau }} \mathrm{d}V+\frac{1}{V}{\int }_{{V}_{f}}{\rho }_{f}{\varvec{g}} \mathrm{d}V$$
(33)

With Eq. 17, the first term on the left-hand side of Eq. 33 can be expressed as:

$$\frac{1}{V}{\int }_{{V}_{f}}\frac{\partial }{\partial t}\left({\rho }_{f }{{\varvec{u}}}_{{\varvec{f}}}\right) \mathrm{d}V=\frac{\partial }{\partial t}\left({\phi }_{V} {\langle {\rho }_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\right)$$
(34)

Using Gray’s theorem (1983) and considering no mass transfer between phases, the second term on the left-hand side of Eq. 33 writes:

$$\frac{1}{V} {\int }_{{V}_{f}}\nabla \cdot \left({\rho }_{f} {{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\right) dV=\nabla \cdot \left({\phi }_{V} {\langle {\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\right)+\frac{\nabla V}{V} \left({\phi }_{V} {\langle {\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}-{\phi }_{A} {\langle {\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}^{f}\right)$$
(35)

We make use of the simplified form of \({\langle {\rho }_{f} {{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\) developed by Faghri and Zhang (2006):

$${\langle {\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}={\langle {\rho }_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}={\langle {\rho }_{f}\rangle }^{f }\left({\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}{\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}+{\langle {{\varvec{u}}\boldsymbol{^{\prime}}}_{{\varvec{f}}}{{\varvec{u}}\boldsymbol{^{\prime}}}_{{\varvec{f}}}\rangle }^{f}\right)$$
(36)

where \({{\varvec{u}}\boldsymbol{^{\prime}}}_{{\varvec{f}}}\) is the fluctuating part of \({{\varvec{u}}}_{{\varvec{f}}}\) defined as \({{\varvec{u}}\boldsymbol{^{\prime}}}_{{\varvec{f}}}={{\varvec{u}}}_{{\varvec{f}}}-{\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\). Following the development discussed in Eq. 19 and assuming low variations within the REV, \({\langle {\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}\) writes:

$${\langle {\rho }_{f}{{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}^{f}={\langle {\rho }_{f}\rangle }_{A}^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}^{f}={\langle {\rho }_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}$$
(37)

Directing the attention to the right-hand side of Eq. 33, with Gray’s theorem (1983), the first term writes:

$$-\frac{1}{V}{\int }_{{V}_{f}}\nabla p \mathrm{d}V=- \nabla \left({\phi }_{V} {\langle p\rangle }^{f}\right)-\frac{\nabla V}{V} {\langle p\rangle }^{f} \left({\phi }_{V}-{\phi }_{A}\right)- \frac{1}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}} p{\mathrm{d}}A$$
(38)

The pressure \(p\) is then decomposed as an intrinsic averaged term \({\langle p\rangle }^{f}\) and a fluctuating part \(p^{\prime}\), i.e., \(p={\langle p\rangle }^{f}+p^{\prime}\). Equation 38 is then expressed as:

$$-\frac{1}{V}{\int }_{{V}_{f}}\nabla p \mathrm{d}V=- {\phi }_{V} \nabla {\langle p\rangle }^{f}-{\langle p\rangle }^{f} \nabla {\phi }_{V}- \frac{{\langle p\rangle }^{f}}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}} {\mathrm{d}}A-\frac{1}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}} p^{\prime}{\mathrm{d}}A-\frac{\nabla V}{V} {\langle p\rangle }^{f} \left({\phi }_{V}-{\phi }_{A}\right)$$
(39)

We make use of the equation proposed by Whitaker (2013):

$$\frac{1}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}} {\mathrm{d}}A=- \nabla { \phi }_{V}$$
(40)

and write Eq. 39 as:

$$-\frac{1}{V}{\int }_{{V}_{f}}\nabla p \mathrm{d}V=- {\phi }_{V} \nabla {\langle p\rangle }^{f}-\frac{1}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}} p^{\prime}{\mathrm{d}}A-\frac{\nabla V}{V} {\langle p\rangle }^{f} \left({\phi }_{V}-{\phi }_{A}\right)$$
(41)

The second term on the right-hand side of Eq. 33 can be written as:

$$\frac{1}{V} {\int}_{{V_{f} }} \nabla \cdot \overline{\overline{\tau }} \,{\text{d}}V = \nabla \cdot \left( \phi_{V} {\langle \overline{\overline{\tau }} \rangle}^{f} \right) + \frac{\nabla V}{V} {\langle \overline{\overline{\tau }} \rangle}^{f} \left( {\phi_{V} - \phi_{A} } \right) + \frac{1}{V} {\int}_{{A_{fs} }} {\varvec{n}}_{{{\varvec{fs}}}} \overline{\overline{\tau }} \user2{ }{\text{d}}A$$
(42)

As \({\varvec{g}}\) is constant, the last term on the right-hand side of Eq. 33 can be written explicitly as:

$$\frac{1}{V} {\int }_{{V}_{f}}{\rho }_{f}{\varvec{g}} \mathrm{d}V = \frac{{\varvec{g}}}{V} {\int }_{{V}_{f}}{\rho }_{f} \mathrm{d}V={\phi }_{V} {\langle {\rho }_{f}\rangle }^{f}{\varvec{g}}$$
(43)

Substitution of Eqs. 34 to 37 and Eqs. 41 to 43 into Eq. 33 yields finally:

$$\begin{aligned} & \frac{\partial }{{\partial t}}\left( {\phi _{V} ~\left\langle {\rho _{f} } \right\rangle ^{f} ~\left\langle {\varvec{u}_{\varvec{f}} } \right\rangle ^{f} } \right) + \nabla \cdot \left( {\phi _{V} ~\left\langle {\rho _{f} } \right\rangle ^{f} ~\left\langle {\varvec{u}_{\varvec{f}} } \right\rangle ^{f} \left\langle {\varvec{u}_{\varvec{f}} } \right\rangle ^{f} } \right) \\ & \quad = - \phi _{V} \nabla \left\langle p \right\rangle ^{f} + \nabla \left( {\phi _{V} \left\langle {\overline{\overline{\tau }} } \right\rangle ^{f} } \right) + \phi _{V} ~\left\langle {\rho _{f} } \right\rangle ^{f} \varvec{g} - \nabla \cdot \left( {\phi _{V} ~\left\langle {\rho _{f} } \right\rangle ^{f} ~\left\langle {\varvec{u^{\prime}}_{\varvec{f}} \varvec{u^{\prime}}_{\varvec{f}} } \right\rangle ^{f} } \right) \\ & \quad + ~\frac{1}{V}{\int}_{{A_{{fs}} }} \varvec{n}_{{\varvec{fs}}} ~\left( {\overline{\overline{\tau }} - p^{\prime}} \right)\varvec{~}{\text{d}}A + \frac{{\nabla V}}{V}~\left( {\phi _{V} - \phi _{A} } \right)~\left( {\left\langle {\overline{\overline{\tau }} } \right\rangle ^{f} - \left\langle {\rho _{f} } \right\rangle ^{f} ~\left\langle {\varvec{u}_{\varvec{f}} \varvec{u}_{\varvec{f}} } \right\rangle ^{f} - \left\langle p \right\rangle ^{f} } \right) \\ \end{aligned}$$
(44)

This gives Eq. 23 in the main text.

Appendix 2: Volume-Averaged Thermal Energy Equations

2.1 Fluid Phase Volume-Averaged Thermal Energy Equation

The following equation is obtained by averaging Eq. 24 over a REV of volume \(V\):

$$\frac{1}{V}{\int }_{{V}_{f}}\frac{\partial }{\partial t}\left({\rho }_{f }{C}_{f }{T}_{f}\right) \mathrm{d}V+\frac{1}{V}{\int }_{V}\nabla \cdot \left({\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\right) \mathrm{d}V=\frac{1}{V}{\int }_{{V}_{f}}\nabla \cdot \left({\lambda }_{f }\nabla {T}_{f}\right) \mathrm{d}V$$
(45)

The integration and differentiation of the first term on the left-hand side of Eq. 45 can be interchanged, due to the independency in time:

$$\frac{1}{V}{\int }_{{V}_{f}}\frac{\partial }{\partial t}\left({\rho }_{f }{C}_{f }{T}_{f}\right) \mathrm{d}V=\frac{\partial }{\partial t}\left(\frac{1}{V} {\int }_{{V}_{f}}{\rho }_{f }{C}_{f }{T}_{f} dV\right)=\frac{\partial }{\partial t}\left({{\phi }_{V} \langle {\rho }_{f }{C}_{f }{T}_{f}\rangle }^{f}\right)$$
(46)

Based on Gray’s theorem (1983) for non-constant REV and the assumption that no mass transfer occurs between phases, the second term on the left-hand side of Eq. 45 writes:

$$\frac{1}{V} {\int }_{{V}_{f}}\nabla \cdot \left({\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\right) \mathrm{d}V=\nabla \cdot \left({\phi }_{V} {\langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\right)+\frac{\nabla V}{V} \left({\phi }_{V} {\langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}-{{\phi }_{A} \langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}^{f}\right)$$
(47)

We make use now of the analysis presented by Whitaker (2013) and Ochoa-Tapia and Whitaker (1993) to simplify the terms \(\langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle\), \({\langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}\) and \(\langle {\rho }_{f }{C}_{f }{T}_{f}\rangle\) as follows:

$${\langle {\rho }_{f }{C}_{f }{T}_{f}\rangle }^{f}={\langle {\rho }_{f}\rangle }^{f} {\langle {C}_{f}\rangle }^{f} {\langle {T}_{f}\rangle }^{f}$$
(48)
$${\langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle }_{A}^{f}={\langle {\rho }_{f}\rangle }^{f} {\langle {C}_{f}\rangle }^{f} {\langle {T}_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}$$
(49)
$${\langle {\rho }_{f }{C}_{f }{T}_{f }{{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}={\langle {\rho }_{f}\rangle }^{f} {\langle {C}_{f}\rangle }^{f} {\langle {T}_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}$$
(50)

Using Gray’s theorem (1983) another time, the term on the right-hand side of Eq. 45 writes as follows:

$$\frac{1}{V}{\int }_{{V}_{f}}\nabla \cdot \left({\lambda }_{f }\nabla {T}_{f}\right) \mathrm{d}V=\nabla \cdot \left({{\phi }_{V} \lambda }_{{f}_{\mathrm{eff}}} \nabla {\langle {T}_{f}\rangle }^{f}\right)+\frac{\nabla V}{V}{ \lambda }_{{f}_{\mathrm{eff} }}\nabla {\langle {T}_{f}\rangle }^{f }\left({\phi }_{V}-{\phi }_{A}\right)+\frac{1}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}}\cdot \left({\lambda }_{f }\nabla {T}_{f}\right){\mathrm{d}}A$$
(51)

where \({\lambda }_{{f}_{\mathrm{eff}}}\) is the effective thermal conductivity of the fluid. Considering the turbulence of the flow, \({\lambda }_{{f}_{\mathrm{eff}}}\) is computed as:

$${\lambda }_{{f}_{\mathrm{eff}}}={\lambda }_{f}+\frac{{\langle {C}_{f}\rangle }^{f} {\mu }_{t}}{{\mathrm{Pr}}_{\mathrm{t}}}$$
(52)

where \({\mu }_{t}\) is the eddy viscosity, and \({\mathrm{Pr}}_{\mathrm{t}}\) the turbulent Prandtl number. The effect of turbulence modeling will be discussed in detail in Part II. Substituting Eqs. 46 to 51 into Eq. 45 provides:

$$\frac{\partial }{\partial t}\left({\phi }_{V} {\langle {\rho }_{f}\rangle }^{f} {\langle {C}_{f}\rangle }^{f} {\langle {T}_{f}\rangle }^{f}\right)+\nabla \cdot \left({\phi }_{V} {\langle {\rho }_{f}\rangle }^{f} {\langle {C}_{f}\rangle }^{f} {\langle {T}_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\right)=\nabla \cdot \left({{\phi }_{V} \lambda }_{{f}_{\mathrm{eff}}}\nabla {\langle {T}_{f}\rangle }^{f}\right)+\frac{1}{V}{\int }_{{A}_{fs}}{{\varvec{n}}}_{{\varvec{f}}{\varvec{s}}}\cdot \left({\lambda }_{f }\nabla {T}_{f}\right){\mathrm{d}}A+\frac{\nabla V}{V}\left({\phi }_{V}-{\phi }_{A}\right)\left({\lambda }_{{f}_{\mathrm{eff} }}\nabla {\langle {T}_{f}\rangle }^{f }-{\langle {\rho }_{f}\rangle }^{f} {\langle {C}_{f}\rangle }^{f} {\langle {T}_{f}\rangle }^{f} {\langle {{\varvec{u}}}_{{\varvec{f}}}\rangle }^{f}\right)$$
(53)

This gives Eq. 26 in the main text.

2.2 Solid Phase Volume-Averaged Thermal Energy Equation

Averaging Eq. 25 over a REV of volume \(V\) gives:

$$\frac{1}{V}{\int }_{{V}_{s}}\frac{\partial }{\partial t}\left({\rho }_{s }{C}_{s }{T}_{s}\right) \mathrm{d}V=\frac{1}{V}{\int }_{{V}_{s}}\nabla \cdot \left({\lambda }_{s }\nabla {T}_{s}\right) \mathrm{d}V$$
(54)

where \({V}_{s}\) is the volume of solid beads in the REV. The solid phase intrinsic volume average of a quantity \(\psi\) is defined as:

$${\langle \psi \rangle }^{s}=\frac{1}{{V}_{s}} {\int }_{{V}_{s}}\psi \mathrm{d}V=\frac{1}{\left(1-{\phi }_{V}\right) V} {\int }_{{V}_{s}}\psi \mathrm{d}V$$
(55)

The integration and differentiation of the term on the left-hand side of Eq. 54 can be interchanged. Applying the simplification proposed by Whitaker (2013) and Ochoa-Tapia and Whitaker (1993) gives:

$$\frac{1}{V}{\int }_{{V}_{s}}\frac{\partial }{\partial t}\left({\rho }_{s }{C}_{s }{T}_{s}\right) \mathrm{d}V=\frac{\partial }{\partial t}\left[{(1-\phi }_{V}) {\langle {\rho }_{s}\rangle }^{s} {\langle {C}_{s}\rangle }^{s} {\langle {T}_{s}\rangle }^{s}\right]$$
(56)

The term on the right-hand side of Eq. 54 may be expressed in the same way as the term in fluid phase equation:

$$\frac{1}{V}{\int }_{{V}_{s}}\nabla \cdot \left({\lambda }_{s }\nabla {T}_{s}\right) \mathrm{d}V=\nabla \cdot \left[{\left({1-\phi }_{V}\right) \lambda }_{s }\nabla {\langle {T}_{s}\rangle }^{s}\right]+\frac{\nabla V}{V}{ \lambda }_{s }\nabla {\langle {T}_{s}\rangle }^{s }\left({\phi }_{A}-{\phi }_{V}\right)+\frac{1}{V}{\int }_{{A}_{sf}}{{\varvec{n}}}_{{\varvec{s}}{\varvec{f}}}\cdot \left({\lambda }_{s }\nabla {T}_{s}\right){\mathrm{d}}A$$
(57)

Substitution of Eq. 56 and Eq. 57 into Eq. 54 results in:

$$\frac{\partial }{\partial t}\left[{(1-\phi }_{V}) {\langle {\rho }_{s}\rangle }^{s} {\langle {C}_{s}\rangle }^{s} {\langle {T}_{s}\rangle }^{s}\right]=\nabla \cdot \left[{\left({1-\phi }_{V}\right) \lambda }_{s }\nabla {\langle {T}_{s}\rangle }^{s}\right]+\frac{1}{V}{\int }_{{A}_{sf}}{{\varvec{n}}}_{{\varvec{s}}{\varvec{f}}}\cdot \left({\lambda }_{s }\nabla {T}_{s}\right){\mathrm{d}}A+\frac{\nabla V}{V}{ \lambda }_{s }\nabla {\langle {T}_{s}\rangle }^{s }\left({\phi }_{A}-{\phi }_{V}\right)$$
(58)

This gives Eq. 27 in the main text.

Appendix 3: Calculation of the Volume and Area Porosity from LIGGGHTS Data

To determine the value of \({\phi }_{V}\) and \({\phi }_{A}\) for a given REV, we firstly loop through all the beads in the packing and calculate the distance between each bead center and the REV. If a bead is located entirely out of the REV, it will be excluded from the following calculation. For the other beads, there are two possible situations: the bead is located entirely and partially inside the REV. In the first situation, the entire bead’s volume will be used to calculate \({\phi }_{V}\) and \({\phi }_{A}\) without any surface area term. In the second situation, the intersection volume (\({V}_{\mathrm{ins}}\)) and surface area (\({A}_{\mathrm{ins}}\)) are calculated by the following equations:

$${V}_{\mathrm{ins}}=\frac{\pi }{12 {d}_{ss}} {\left(R+{r}_{s}-{d}_{ss}\right)}^{2}\left({d}_{ss}^{2}+2{ d}_{ss} {r}_{s}-3 {r}_{s}^{2}+2 {d}_{ss} R+6 {r}_{s} R-3{R}^{2}\right)$$
(59)
$${A}_{\mathrm{ins}}=2 \pi R \frac{{r}_{s}^{2}-{\left(R-{d}_{ss}\right)}^{2}}{2 {d}_{ss}}$$
(60)

where \({d}_{ss}\) is the distance between the two sphere centers, \(R\) is the radius of the spherical REV and \({r}_{s}\) is the radius of the bead. A schematic diagram is given in Fig. 

Fig. 6
figure 6

Schematic of a typical spherical REV that intersects with a bead

6. We calculated and summed up the volume and area of each single bead to obtain the total beads occupied volume and bounding area for the REV. Then, the value of \({\phi }_{V}\) and \({\phi }_{A}\) can be determined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Béguin, C., Causse, P. et al. Convective Heat Transfer Between a Bead Packing and Its Bounding Wall: Part I—Theory. Transp Porous Med 143, 397–416 (2022). https://doi.org/10.1007/s11242-022-01771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01771-x

Keywords

Navigation