Skip to main content
Log in

Mathematical modelling of flow through consolidated isotropic porous media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A new mathematical model is proposed for time-independent laminar flow through a rigid isotropic and consolidated porous medium of spatially varying porosity. The model is based upon volumetric averaging concepts. Explicit assumptions regarding the mean geometric properties of the porous microstructure lead to a relationship between tortuosity and porosity. Microscopic inertial effects are introduced through consideration of flow development within the pores. A momentum transport equation is derived in terms of the fluid properties, the porous medium porosity and a characteristic length of the microstructure. In the limiting cases of porosity unity and zero, the model yields the required Navier-Stokes equation for free flow and no flow in a solid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A p :

pore cross-sectional area

d :

microscopic characteristic length

d e :

flow length within RUC

d p :

pore width

f :

friction factor,\(\left( {\frac{{\partial p}}{{\partial x}} \cdot 2d_p } \right)/(p\upsilon _p^2 ),\)

f app :

friction factor, (2d pΔp)/(γν p2 Δx)

g :

gravity constant

I :

integral expression

K :

hydrodynamic permeability

l f :

frictional flow length within RUC

n :

porosity

p :

pressure

q :

specific discharge (= 〈v〉)

Re:

Reynolds number,γυ pdp/μ

Re qd :

Reynolds number,γqd/μ

S :

surface

S fs :

fluid-solid interface within RUC or REV

T :

tortuosity

V :

volume

v :

fluid velocity withinV n

v n :

average fluid velocity withinv n

v p :

mean fluid velocity within pore section

x :

axial distance

x + :

dimensionless axial distance

β :

inertia parameter

μ :

fluid dynamic viscosity

μ′ :

Brinkman effective viscosity

ν :

normal vector onS fs

ϱ :

fluid density

φ :

extensive tensorial property

c :

as subscript, denotes central or critical value

i :

as subscript, denotes inflection point

n :

as subscript, pertaining to void volume

o :

as subscript, denotes total volume of RUC or REV

p :

as subscript, pertaining to pore section

μ :

a subscript, denotes streamwise shear term

▽:

vector operator ‘del’

(·):

deviation of ( ) from 〈( )〉 n , tensor inner product

〈( )〉:

volumetric phase average of ( )

〈( )〉 n :

volumetric intrinsic phase average of ( )

References

  • Bachmat, Y. and Bear, J., 1986, Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach,Transport in Porous Media 1, 213–240.

    Google Scholar 

  • Bear, J., 1972,Dynamics of Fluids in Porous Media, Elsevier, N.Y.

    Google Scholar 

  • Bear, J. and Bachmat, Y., 1983, On the equivalence of areal and volumetric averages in transport phenomena in porous media,Adv. Water Resour. 6, 59–62.

    Google Scholar 

  • Bear, J. and Bachmat, Y., 1984, Transport phenomena in porous media - basic equations, J. Bear and M. Y. Corapcioglu (eds.),Fundamentals of Transport Phenomena in Porous Media, Proc. NATO/ASI, Newark, Delaware, Martinus Nijhoff, Dordrecht, pp. 3–61.

    Google Scholar 

  • Bear, J. and Bachmat, Y., 1986, Macroscopic modelling of transport phenomena in porous media. 2: Applications to mass, momentum and energy transport,Transport in Porous Media 1, 241–269.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960,Transport Phenomena, John Wiley, New York.

    Google Scholar 

  • Brinkman, H. C., 1947, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles,Appl. Sc. Res. A1, 27–34.

    Google Scholar 

  • Churchill, S. W. and Usagi, R., 1972, A general expression for the correlation of rates of transfer and other phenomena,AIChEJ,18(6), 1121–1128.

    Google Scholar 

  • Cushman, J. H., 1982, Proofs of the volume averaging theorems for multiphase flow,Adv. Water Resour. 5, 248–253.

    Google Scholar 

  • Darcy, H. P. G., 1856,Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris, Cf. Muskat, M.,The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New York, 1937.

    Google Scholar 

  • Du Plessis, J. P. and Masliyah, J. H., 1987, Flow in a tube with a porous obstruction,Proc. 30th Heat Transfer and Fluid Mechanics Inst., Sacramento, AUFNCA, U.S.A., May 28–29.

  • Dullien, F. A. L. and Azzam, M. I. S., 1973, Flow rate-pressure gradient measurements in periodically non-uniform capillary tubes,Am. Inst. Chem. Eng. J. 19(2), 222–229.

    Google Scholar 

  • Dybbs, A. and Edwards, R. V., 1984, A new look at porous media fluid mechanics - Darcy to turbulent, in J. Bear and M. Y. Corapcioglu (eds.) inFundamentals of Transport Phenomena in Porous Media, Proc. NATO/ASI, Newark, Delaware, Martinus Nijhoff, Dordrecht, pp.199–256.

    Google Scholar 

  • Forchheimer, P. H., 1901, Wasserbewegung durch boden,Zeit. Ver. Deutsch. Ing.,45, 1782–1788.

    Google Scholar 

  • Hassanizadeh, M. and Gray, W. G., 1979, General conservation equations for multiphase systems: 1. Averaging procedure,Adv. Water Resour. 2, 131–144.

    Google Scholar 

  • Lundgren, T. S., 1972, Slow flow through stationary random beds and suspensions of spheres,J. Fluid Mech. 51(2), 273–299.

    Google Scholar 

  • Masliyah, J. H., Neale, G., Malysa, K., and van de Ven, T. G. M., 1987, Creeping flow over a composite sphere: solid core with porous shell,Chem. Eng. Sc. 42, 245–253.

    Google Scholar 

  • Masliyah, J. H. and Polikar, M., 1980, Terminal velocities of porous spheres,Can. J. Chem. Eng. 58, 299–302.

    Google Scholar 

  • Neale, G. and Nader, W., 1974, Practical significance of Brinkman's extension of Darcy's Law: Coupled parallel flows within a channel and a bounding porous medium,Can. J. Chem. Eng. 52, 475–478.

    Google Scholar 

  • Shah, R. K. and London, A. L., 1978, Laminar flow forced convection in ducts, in F. I. Thomas and J. P. Hartnett (eds.),Adv. Heat Transfer, Suppl. 1 Academic Press, London.

    Google Scholar 

  • Slattery, J. C., 1969, Single phase flow through porous media,Am. Inst. Chem. Eng. J. 15, 866–872.

    Google Scholar 

  • Whitaker, S., 1967, Diffusion and dispersion in porous media,Am. Inst. Chem. Eng. J. 13(7), 420–427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Plessis, J.P., Masliyah, J.H. Mathematical modelling of flow through consolidated isotropic porous media. Transp Porous Med 3, 145–161 (1988). https://doi.org/10.1007/BF00820342

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00820342

Key words

Navigation