Skip to main content
Log in

Genetic transformation and molecular research in Anthurium: progress and prospects

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Although Anthurium is an attractive and commercially popular ornamental plant, its genetic enhancement has lagged behind that of other ornamental crops. There are several agronomically important traits in need of improvement. These include novel flower colors and morphologies, increased shelf and vase lives, and resistance to bacterial blight (Xanthomonas axonopodis pv. dieffenbachiae), burrowing nematodes and abiotic stresses. The production of transgenic Anthuriums is critical because the conventional breeding of a cultivar with beneficial traits typically requires 8–10 years. This review evaluates the problems, challenges and progress associated with developing molecular markers for Anthurium and in genetically transforming this ornamental. Recent improvements have hastened the tissue culture and regeneration of transgenic plants primarily using Agrobacterium-based methods. Promoter analyses have focused on constitutive and tissue-enhanced gene expression with the green fluorescent protein being a more reliable reporter than β-glucuronidase. The development of molecular markers assists with phylogenetic analyses and PCR-based markers such as RAPD, SSR, SPAR, ISSR and AFLP can be used to differentiate cultivars and for genetic fingerprinting. The marker-assisted breeding of Anthurium will become more feasible once available data are used for association to specific traits. Work on the identification of quantitative trait loci for disease resistance and other traits such as flower colour is required and should incorporate new approaches, such as next-generation sequencing technologies. By highlighting the aforementioned bottlenecks and successes in this review, it is expected that the pace of Anthurium genetic improvement will increase with the multifaceted incorporation of focused priorities and new technology advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

ANS:

Anthocyanidin synthase

AS:

Acetosyringone

bHLH:

Basic helix-loop-helix family

CaMV35S:

Cauliflower mosaic virus 35S promoter

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

EST:

Expressed sequence tag

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

ISSR:

Inter simple sequence repeat

MAS:

Marker-assisted breeding

nptII :

Neomycin phosphotransferase II

PCR:

Polymerase chain reaction

RAPD:

Random amplified polymorphic DNA

SPAR:

Single primer amplification reaction

Xad :

Xanthomonas axonopodis pv. dieffenbachiae

References

  • Albert NW, Arathoon S, Collette VE, Schwinn KE, Jameson PE, Lewis DH, Zhang H, Davies KM (2010) Activation of anthocyanin synthesis in Cymbidium orchids: variability between known regulators. Plant Cell Tissue Organ Cult 100:355–360. doi:10.1007/s11240-009-9649-0

    Article  CAS  Google Scholar 

  • Alvarez AM, Toves PJ, Vowell TS (2006) Bacterial blight of anthuriums: Hawaii’s experience with a global disease. APSnet Features. doi: 10.1094/APSnetFeature-2006-0206

  • Anaïs G, Derrasse A, Prior P, Cadic A (2000) Breeding anthuriums (Anthurium andreanum L.) for resistance to bacterial blight caused by Xanthomonas campestris pv. dieffenbachiae. Acta Hortic (ISHS) 508:135–140

    Article  Google Scholar 

  • Andersen ØM, Jordheim M (2006) The anthocyanins. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Taylor & Francis Group, Boca Raton pp 471–551

  • Andrade IM, Mayo SJ, Van Den Berg C, Fay MF, Chester M, Lexer C, Kirkup D (2009) Genetic variation in natural populations of Anthurium sinuatum and A. pentaphyllum var. pentaphyllum (Araceae) from north-east Brazil using AFLP molecular markers. Bot J Linn Soc 159:88–105. doi:10.1111/j.1095-8339.2008.00945.x

    Article  Google Scholar 

  • Avila-Rostant O, Lennon AM, Umaharan P (2010) Spathe color variation in Anthurium andraeanum Hort. and its relationship to vacuolar pH. HortScience 45:1768–1772

    Google Scholar 

  • Avila-Rostant O, Lennon AM, Collette V, Umaharan P (2011) Determination of expression patterns of flavonoid biosynthetic genes in cultivars of Anthurium andraeanum towards understanding regulatory control of spathe colour. Tropical Agriculture (Trinidad) 88:10–17

    Google Scholar 

  • Bliss BJ, Suzuki JY (2012) Genome size in Anthurium evaluated in the context of karyotypes and phenotypes. AoB Plants, pls006. doi: 10.1093/aobpla/pls006

  • Buldewo S, Jaufeerally-Fakim YF (2002) Isolation of clean and PCR-amplifiable DNA from Anthurium andreanum. Plant Mol Biol Reporter 20:71a–71g. doi:10.1007/BF02801936

    Article  Google Scholar 

  • Buldewo S, Pillay M, Jaufeerally-Fakim YF (2012) Genetic diversity in Anthurium andraeanum cultivars in Mauritius. Afr J Biotechnol 11:16737–16744. doi:10.5897/AJB12.2614

    CAS  Google Scholar 

  • Chen FC, Kuehnle AR (1996) Obtaining transgenic Anthurium through Agrobacterium-mediated transformation of etiolated internodes. J Amer Soc Hortic Sci 121(1):47–51

    CAS  Google Scholar 

  • Chen FC, Kuehnle AR, Sugii N (1997) Anthurium roots for micropropagation and Agrobacterium-mediated gene transfer. Plant Cell Tissue Organ Cult 49:71–74. doi:10.1023/A:1005812802655

    Article  CAS  Google Scholar 

  • Clark BR, Suzuki JY, Bliss BJ, Borris RP (2012) Flavone C-glycosides from Anthurium andraeanum. Nat Prod Comm 7:747–748

    CAS  Google Scholar 

  • Clark BR, Bliss BJ, Suzuki JY, Borris RP (2014) Chemotaxonomy of Hawaiian Anthurium cultivars based on multivariate analysis of phenolic metabolites. J Agric Food Chem 62:11323–11334. doi:10.1021/jf502187c

    Article  CAS  PubMed  Google Scholar 

  • Collette VE, Jameson PE, Schwinn KE, Umaharan P, Davies KM (2004) Temporal and spatial expression of flavonoid biosynthetic genes in flowers of Anthurium andraeanum. Physiol Plant 122:297–304. doi:10.1111/j.1399-3054.2004.00402.x

    Article  CAS  Google Scholar 

  • Dhanya MK, Mary CA (2006) Management of bacterial blight of anthurium (Anthurium andreanum Linden. [sic]) using ecofriendly materials. J Trop Agric 44(1–2):74–75

    CAS  Google Scholar 

  • Donahoo RS, Jones JB, Lacy GH, Stromberg VK, Norman DJ (2013) Genetic analyses of Xanthomonas axonopodis pv. dieffenbachiae strains reveal distinct phylogenetic groups. Phytopathology 103:237–244. doi:10.1094/PHYTO-08-12-0191-R

    Article  CAS  PubMed  Google Scholar 

  • Duffy B (2000) Survival of the anthurium blight pathogen, Xanthomonas axonopodis pv. dieffenbachiae, in field crop residues. Eur J Plant Pathol 106(3):291–295. doi:10.1023/A:1008738508853

    Article  Google Scholar 

  • Ehrenberger J, Kuehnle AR (2003) Enhanced histological technique for observation of spathe pigmentation in Anthurium species and hybrids. Aroideana 26:120–124

    Google Scholar 

  • Elibox W, Umaharan P (2008a) A quantitative screening method for the detection of foliar resistance to Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Eur J Plant Pathol 121:35–42. doi:10.1007/s10658-007-9239-0

    Article  Google Scholar 

  • Elibox W, Umaharan P (2008b) Inheritance of major spathe colors in Anthurium andraeanum Hort. is determined by three major genes. HortScience 43:787–791

    Google Scholar 

  • Elibox W, Umaharan P (2010) Cultivar differences in the deterioration of vase-life in cut-flowers of Anthurium andraeanum is determined by mechanisms that regulate water uptake. Sci Hortic 124:102–108. doi:10.1016/j.scienta.2009.12.005

    Article  Google Scholar 

  • EPPO (2014) EPPO A2 List of pests recommended for regulation as quarantine pests. https://www.eppo.int/QUARANTINE/listA2.htm. Accessed 24 July 2015

  • EPPO (European and Mediterranean Plant Protection Organization) (2009) PM 7/23 (2): Xanthomonas axonopodis pv. dieffenbachiae. EPPO Bull 39:393–402. doi:10.1111/j.1365-2338.2009.02327.x

    Article  Google Scholar 

  • Fitch MMM, Leong TCW, He XL, McCafferty HRK, Zhu YJ, Moore PH, Gonsalves D, Aldwinckle AS, Atkinson HJ (2011) Improved transformation of Anthurium. HortScience 46(3):358–364

    CAS  Google Scholar 

  • Ge Y, Zhang F, Shen X, Yu Y, Pan X, Liu X, Liu J, Pan G, Tian D (2012) Genetic variations within a collection of anthuriums unraveled by morphological traits and AFLP markers. Biochem Syst Ecol 45:34–40. doi:10.1016/j.bse.2012.07.023

    Article  CAS  Google Scholar 

  • Goodrich J, Carpenter R, Coen ES (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955–964. doi:10.1016/0092-8674(92)90038-E

    Article  CAS  PubMed  Google Scholar 

  • Gopaulchan D, Lennon AM, Umaharan P (2013) Identification of reference genes for expression studies using quantitative RT-PCR in spathe tissue of Anthurium andraeanum (Hort.). Sci Hortic 153:1–7. doi:10.1016/j.scienta.2013.01.024

    Article  CAS  Google Scholar 

  • Gopaulchan D, Umaharan P, Lennon AM (2014) A molecular assessment of the genetic model of spathe color inheritance in Anthurium andraeanum (Hort.). Planta 239:695–705. doi:10.1007/s00425-013-2007-9

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Ann Rev Plant Biol 57:761–780. doi:10.1146/annurev.arplant.57.032905.105248

    Article  CAS  Google Scholar 

  • Halloran JM, Kuehnle AR (1998) What do anthurium buyers want in their flowers? Results of a market survey. University of Hawaii CTAHR cooperative extension services series: EFS 27. University of Hawaii press, Honolulu, pp 1–4

  • Hayden DM, Christopher DA (2004) Characterization of senescence-associated gene expression and senescence-dependent and -independent cysteine proteases differing in microsomal processing in Anthurium. Plant Sci 166:779–790. doi:10.1016/j.plantsci.2003.11.019

    Article  CAS  Google Scholar 

  • Hosein FN, Lennon AM, Umaharan P (2012) Optimization of an Agrobacterium-mediated transient assay for gene expression studies in Anthurium andraeanum. J Amer Soc Hortic Sci 137:263–272

    CAS  Google Scholar 

  • Iwata RY, Tang C-S, Kamemoto H (1979) Anthocyanins of Anthurium andreanum Lind. J Amer Soc Hortic Sci 104:464–466

    CAS  Google Scholar 

  • Iwata RY, Tang C-S, Kamemoto H (1985) Concentration of anthocyanins affecting spathe color in anthuriums. J Amer Soc Hortic Sci 110:383–385

    CAS  Google Scholar 

  • Kamemoto H, Kuehnle AR (1996) Breeding anthuriums in Hawaii. University of Hawaii Press, HI, p 168

    Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G-O, Nehra NS, Lu C-Y, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600. doi:10.1093/pcp/pcm131

    Article  CAS  PubMed  Google Scholar 

  • Khaithong T, Sipes BS, Kuehnle AR (2006) Development of transgenic anthurium expressing modified rice cysteine protease inhibitor. J Nematol 38(2):276–277

    Google Scholar 

  • Khaithong T, Sipes BS, Kuehnle AR (2007) Transgenic Anthurium andraeanum expressing modified rice cysteine protease inhibitor and resistance to Radopholus similis. J Nematol 39(1):99–100

    Google Scholar 

  • Khan YJ, Pankajakshan M (2010) Genetic diversity among commercial varieties of Anthurium andreanum Linden [sic] using RAPD markers. J Plant Genetics Transgenics 1:11–15

    Google Scholar 

  • Khoodoo MHR, Sahin F, Jaufeerally-Fakim Y (2005) Sensitive detection of Xanthomonas axonopodis pv. dieffenbachiae on Anthurium andreanum by immunocapture-PCR (IC-PCR) using primers designed from sequence characterized amplified regions (SCAR) of the blight pathogen. Eur J Plant Pathol 112:379–390. doi:10.1007/s10658-005-7062-z

    Article  CAS  Google Scholar 

  • Kobayashi RS, Brewbaker JL, Kamemoto H (1987) Identification of Anthurium andreanum cultivars by gel electrophoresis. J Amer Soc Hortic Sci 112:164–167

    CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141. doi:10.1104/pp.008532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuehnle AR, Chen FC (1994) Agrobacterium-mediated transformation of anthurium. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 29, plant protoplasts and genetic engineering V. Springer, Berlin, pp 215–225. doi: 10.1007/978-3-662-09366-5_15

  • Kuehnle AR, Sugii N (1991a) Induction of tumors in Anthurium andraeanum by Agrobacterium tumefaciens. HortScience 26:1325–1328

    Google Scholar 

  • Kuehnle AR, Sugii N (1991b) Callus induction and plantlet regeneration in tissue cultures of Hawaiian Anthuriums. HortScience 26:919–921

    Google Scholar 

  • Kuehnle AR, Chen FC, Sugii N (2001) Transgenic Anthurium. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 48. Transgenic Crops III, Springer, Berlin, pp 3–15. doi: 10.1007/978-3-662-10603-7_1

  • Kuehnle AR, Fujii T, Chen FC, Alvarez A, Sugii N, Fukui R, Aragon SL (2004a) Peptide biocides for engineering bacterial blight tolerance and susceptibility in cut-flower Anthurium. HortScience 39:1327–1331

    CAS  Google Scholar 

  • Kuehnle AR, Fujii T, Mudalige R, Alvarez A (2004b) Gene and genome mélange in breeding of Anthurium and Dendrobium orchid. Acta Hortic 651:115–122

    Article  CAS  Google Scholar 

  • Li C, Yang G, Huang S, Lü D, Wang C, Chen J, Yin J (2013a) Characterisation of flavonoids in anthurium spathes and their contribution to spathe colouration. J Hortic Sci Biotechnol 88:208–215

    CAS  Google Scholar 

  • Li GY, McVetty PBE, Quiros CF (2013b) SRAP molecular marker technology in plant science. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, Croatia, pp 23–43. doi: 10.5772/54511

  • Li Z, Wang J, Zhang X, Xu L (2015) Comparative transcriptome analysis of Anthurium “Albama” and its anthocyanin-loss mutant. PLoS ONE 10(3):e0119027. doi:10.1371/journal.pone.0119027

    Article  PubMed Central  PubMed  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc a member of the maize R gene family responsible for tissue specific anthocyanin production encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Nat Acad Sci USA 86:7092–7096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto TK, Kuehnle AR (1997) Micropropagation of Anthurium. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 40: high-tech and micropropagation VI. Springer, New York, New York, pp 14–29. doi: 10.1007/978-3-662-03354-8_2

  • Matsumoto TK, Keith LM, Cabos RYM, Suzuki JY, Gonsalves D, Thilmony R (2013) Screening promoters for Anthurium transformation using transient expression. Plant Cell Rep 32:443–451. doi:10.1007/s00299-012-1376-z

    Article  CAS  PubMed  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217. doi:10.1016/S1360-1385(98)01242-4

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

  • Nowbuth P, Khittoo G, Bahorun T, Venkatasamy S (2005) Assessing genetic diversity of some Anthurium andraeanum Hort. cut-flower cultivars using RAPD markers. Afr J Bot 4:1189–1194. doi:10.5897/AJB2005.000-3238

    CAS  Google Scholar 

  • Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi Y, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Nat Acad Sci USA 103:11075–11080. doi:10.1073/pnas.0604246103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paull RE, Chantrachit T (2001) Benzyladenine and the vase life of tropical ornamentals. Postharvest Biol Technol 21:303–310. doi:10.1016/S0925-5214(00)00153-8

    Article  CAS  Google Scholar 

  • Paull RE, Chen NJ, Deputy J (1985) Physiological changes associated with senescence of cut Anthurium flowers. J Amer Hortic Sci 110:156–162

    CAS  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291. doi:10.1105/tpc.105.034041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robène-Soustrade I, Laurent P, Gagnevin L, Jouen E, Pruvost O (2006) Specific detection of Xanthomonas axonopodis pv. dieffenbachiae in anthurium (Anthurium andreanum) tissues by nested PCR. Appl Environ Microbiol 72:1072–1078. doi:10.1128/AEM.72.2.1072-1078.2006

    Article  PubMed Central  PubMed  Google Scholar 

  • Souza Neto JD, Soares TCB, Motta LB, Cabral PDS, Silva JA (2014) Molecular characterization of Anthurium genotypes by using DNA fingerprinting and SPAR markers. Genet Mol Res 13:4766–4775. doi:10.4238/2014.July.2.6

    Article  CAS  PubMed  Google Scholar 

  • Spelt C, Quattrocchio F, Mol J, Koes R (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH and seed coat development by genetically distinct mechanisms. Plant Cell 14:2121–2135. doi:10.1105/tpc.003772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA (2015) Negative results: negative perceptions limit their potential for increasing reproducibility. J Negat Results BioMed 14:12. doi:10.1186/s12952-015-0033-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2013) Plant thin cell layers: a 40-year celebration. J Plant Growth Regul 32(4):922–943. doi:10.1007/s00344-013-9336-6

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J, Winarto B, Zeng SJ (2015a) Anthurium in vitro: a review. Sci Hortic 186:266–298. doi:10.1016/j.scienta.2014.11.024

    Article  Google Scholar 

  • Teixeira da Silva JA, Winarto B, Dobránszki J, Zeng SJ (2015b) Anther culture of Anthurium: a review. Acta Physiol Plant. doi: 10.1007/s11738-015-1909-5

  • The Plant List (2015) http://www.theplantlist.org/. Accessed 24 July 2015

  • Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu XJ (2013) De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genom 14:827. doi:10.1186/1471-2164-14-827

    Article  CAS  Google Scholar 

  • Venkat SK, Bommisetty P, Patil MS, Reddy L, Chennareddy A (2014) The genetic linkage maps of Anthurium species based on RAPD, ISSR and SRAP markers. Sci Hortic 178:132–137. doi:10.1016/j.scienta.2014.08.017

    Article  CAS  Google Scholar 

  • Wachsman G, Heidstra R (2010) The CRE/lox system as a tool for developmental studies at the cell and tissue level. In: Hennig L, Köhler C (eds) Methods in molecular biology (Vol. 655), Springer Science + Business Media LLC, Dordrecht, pp 47–64. doi: 10.1007/978-1-60761-765-5_4

  • Wang JY, Chuang KC (2013) Development of novel microsatellite markers for effective applications in Anthurium cultivar identification. Euphytica 189:421–432. doi:10.1007/s10681-012-0799-5

    Article  CAS  Google Scholar 

  • Wang CD, Niu JH, Zhang ZQ, Pan HB, Ren Y (2013) Analysis of genetic relationships of Anthurium andreanum varieties using SRAP markers. J Plant Gene Resour 14:759–763. (In Chinese with English abstract). doi: 10.13430/j.cnki.jpgr.2013.04.030

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493. doi:10.1104/pp.126.2.485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185. doi:10.1016/j.tplants.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Zeng SJ, Yu ZM, Ke XY (2004) Foliage plant of Araceae. China Forestry Publishing House, Beijing, pp 48–52

    Google Scholar 

  • Zhang YF, Hu F (2014) ISSR analysis of phenotypic variants in tissue culturing regeneration plants of Anthurium andraeanum. Northern Hortic 21:101–104 (In Chinese with English abstract)

    Google Scholar 

  • Zhang Y, Li B, Li SF, Chen ZH (2009) Studies on introduction of double resistance to insect gene into Anthurium andraeanum Lind. via laser microbeam puncture. Acta Laser Bio Sin 18(1):1–5 (In Chinese with English abstract)

    Google Scholar 

  • Zhao Q, Jing J, Wang G, Wang JH, Feng YY, Xing HW, Guan CF (2010) Optimization in Agrobacterium-mediated transformation of Anthurium andraeanum using GFP as a reporter. Electron J Biotechnol 13(5):1–12. doi:10.2225/vol13-issue5-fulltext-2

    Article  Google Scholar 

  • Zhou J, Zhang XF, Ma JC, Zhao XX, Tai GX (2008) Study on the transformation of Anthurium andreanum by Agrobacterium tumefaciens-mediated CBF1 gene. J Anhui Agr Sci 36(8):3136–3137, 3173. (In Chinese with English abstract). doi: 10.13989/j.cnki.0517-6611.2008.08.111

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Teixeira da Silva.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. All authors participated equally to the development of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira da Silva, J.A., Dobránszki, J., Zeng, S. et al. Genetic transformation and molecular research in Anthurium: progress and prospects. Plant Cell Tiss Organ Cult 123, 205–219 (2015). https://doi.org/10.1007/s11240-015-0832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0832-1

Keywords

Navigation