Skip to main content
Log in

In vitro selection of yellow passion fruit genotypes for resistance to Fusarium vascular wilt

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Fusarium vascular wilt (caused by Fusarium oxysporum f. sp. passiflorae) is a limiting factor in the cultivation of yellow passion fruit (Passiflora edulis). Since there is no effective and economically viable control available, development of resistant or at least tolerant cultivars are in demand. A number of procedures have been used for the initial selection of plant genotypes resistant to various fungal pathogens by means of a fungal culture filtrate or purified toxin. In this study, seeds and in vitro-grown plantlets of passion fruit were screened with different concentrations of either Fusarium oxysporum f. sp. passiflorae (FOP) culture filtrate (0, 20, 30, 40 or 50%, v/v) or fusaric acid (0.10, 0.20, 0.30 or 0.40 mM) supplemented in Murashige and Skoog (MS) basal media. Subsequently, selected plants were inoculated with a conidial suspension of FOP to assess correlation between in vivo and in vitro responses. In vitro sensitivity to the selective agents and the resistance response to the pathogen were also compared. Root growth was markedly influenced by FA, culture filtrate, and conidial suspension culture treatments. Observations indicated that roots were primary targets for attack by F. oxysporum. Successful in vitro selection of resistant genotypes by both FA and culture filtrate treatments suggested that this strategy was viable for accelerating breeding of passion fruit for resistance to the Fusarium vascular wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal GP, Hasija SK (1986) Microorganisms in the laboratory—a laboratory guide of mycology, microbiology and plant pathology. Print House, Lucknow

    Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043. doi:0099-2240/96/$04.0010

    PubMed  CAS  Google Scholar 

  • Bernacci LC, Soares-Scott MD, Junqueira NTV, Passos IRS, Meletti LMM (2008) Passiflora edulis Sims: the correct taxonomic way to cite the yellow passion fruit (and of others colors). Rev Brasil Frutic 30:566–576. doi:10.1590/S0100-29452008000200053

    Article  Google Scholar 

  • Borrás O, Bermúdez RS (2010) The pineapple-Fusarium subglutinans interaction: an early selection system for disease resistance. In: FAO/IAEA. Mass screening techniques for selecting crops resistant to disease. International Atomic Energy Agency, Vienna, pp 159–172

  • Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun AM, Amiar Z, Rona JP, Ouhdouch Y, El Hadrami I, Bouteau F (2006) A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Mol Plant-Microbe Interact 19:550–556. doi:10.1094/MPMI-19-0550

    Article  PubMed  CAS  Google Scholar 

  • Carmello-Guerreiro, SM (1995) Técnica de inclusão de material vegetal em historesina. In: Encontro Regional de Anatomistas do Estado de São Paulo, 1, 1995, Rio Claro. Rio Claro:Unesp cultures. Physiol Plant 15:473–497 (In Portuguese)

    Google Scholar 

  • Curir P, Guglieri L, Dolci M, Capponi A, Aurino G (2000) Fusaric acid production by Fusarium oxysporum in the lily basal rot disease. Europ J Plant Pathol 106:849–856

    Article  CAS  Google Scholar 

  • Diniz SPSS, Oliveira RC (2009) Effects of fusaric acid on Zea mays L. seedlings. Φyton 78:155–160

    Google Scholar 

  • Diniz SPSS, Dâcome AS, Bueno MAS, Balleroni CR, Cezini ID, Costa SC (1998) Técnicas em TLC e HPLC para determinação do ácido fusárico em culturas líquidas de Fusarium spp. Fitopatol Brasil 23:280–281 (In Portuguese)

    Google Scholar 

  • Gao F, Xiong A, Peng R, Jin X, Xu J, Zhu B, Chen J, Yao Q (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Org Cult 106:255–262. doi:10.1007/s11240-009-9640-9

    Article  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tiss Org Cult 105:243–251. doi:10.1007/s11240-010-9859-5

    Article  CAS  Google Scholar 

  • Haikal NZ (2008) Effects of filtrates of pathogenic fungi of soybean on seed germination and seedling parameters. J Appl Sci Res 4:48–52

    Google Scholar 

  • He C, Yang A, Zhang W, Gao Q, Zhang J (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tiss Org Cult 101:65–78. doi:10.1007/s11240-009-9665-0

    Article  CAS  Google Scholar 

  • Jan B, Kang FY, Peter Pauls K (1993) In vitro selection for disease/toxins resistance. In: Dixon RA, Gonzales RA (eds) Plant cell cultures: a practical approach. Oxford University Press, Oxford, pp 87–94

    Google Scholar 

  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang Deli, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Org Cult 100:219–227. doi:10.1007/s11240-009-9628-5

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Junqueira NTV, Braga MF, Faleiro FG, Peixoto JR, Bernacci LC (2005) Potencial de espécies silvestres de maracujazeiros como fonte de resistência a doenças. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Maracujá: germoplasma e melhoramento genético. Embrapa, Planaltina, pp 81–108 (In Portuguese)

    Google Scholar 

  • Kumar S, Kumar S, Negi SP, Kanwar JK (2008) In vitro selection and regeneration of chrysanthemum (Dendranthema grandiflorum Tzelev) plants resistant to culture filtrate of Septoria obesa Syd. In Vitro Cell Dev Biol Plant 44:474–479. doi:10.1007/s11627-008-9131-4

    Article  Google Scholar 

  • Lebeda A, Švábová L (2010) In vitro screening methods for assessing plant disease resistance. In: FAO/IAEA. Mass Screening Techniques for Selecting Crops Resistant to Disease. International Atomic Energy Agency, Vienna, pp 5–45

  • Liberato JR, Costa H (2001) Doenças fúngicas, bacterianas e fitonematóides. In: Bruckner CH, Picanço MC (eds) Maracujá: tecnologia de produção. pós-colheita, agroindústria, mercado. Cinco Continentes, Porto Alegre, pp 243–326 (In Portuguese)

    Google Scholar 

  • Matsumoto K, Barbosa ML, Souza LAC, Teixeira JB (2010) In vitro selection for resistance to Fusarium wilt in Banana In: FAO/IAEA. Mass Screening Techniques for Selecting Crops Resistant to Disease. International Atomic Energy Agency, Vienna, pp 101–109

    Google Scholar 

  • Moyen C, Bonmort J, Roblin G (2007) Membrane effects of 2, 4-dichlorophenoxyacetic acid in motor cells of Mimosa pudica L. Plant Physiol Biochem 45:420–426. doi:10.1016/j.plaphy.2007.03.030

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty, Melbourne

    Google Scholar 

  • Ploetz RC (2006) Fusarium-induced diseases of tropical, perennial crops. Phytopathol 96:648–652. doi:10.1094/PHYTO-96-0648

    Article  Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tiss Org Cult 64:185–210

    Article  CAS  Google Scholar 

  • Qiao G, Zhou J, Jiang J, Sun Y, Pan L, Song H, Jiang J, Zhuo R, Wang X, Sun Z (2010) Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines. Plant Cell Tiss Org Cult 102:163–170. doi:10.1007/s11240-010-9717-5

    Article  CAS  Google Scholar 

  • Ravikumar RL, Patil BS, Soregaon CD, Hegde SG (2007) Genetic evidence for gametophytic selection of wilt resistant alleles in chickpea. Theor Appl Gen 114:619–662. doi:10.1007/s00122-006-0462-4

    Article  CAS  Google Scholar 

  • Remotti PC, Löffler HJM, Vloten-Doting L (1997) Selection of cell-line and regeneration of plant resistant to fusaric acid from Gladiolus x grandiflorus cv. ‘Peter Pear’. Euphytica 96:237–245. doi:10.1023/A:1003034215722

    Article  Google Scholar 

  • SAEG—Sistema para Análises Estatísticas (2007). Versão 9.1: Fundação Arthur Bernardes—UFV, Viçosa (In Portuguese)

  • Siqueira L (1963) Growth regulators in the plant disease. Annu Rev Phytopathol 1:5–30

    Article  Google Scholar 

  • Sorkheh K, Shiran B, Khodambshi M, Rouhi V, Ercisli S (2011) In vitro assay of native Iranian almond species (Prunus L. spp.) for drought tolerance. Plant Cell Tiss Org Cult 105:395–404. doi:10.1007/s11240-010-9879-1

    Article  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2011) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Org Cult 105:181–192. doi:10.1007/s11240-010-9850-1

    Article  CAS  Google Scholar 

  • Telles-Pupulin AR, Diniz SPSS, Bracht A, Ishii-iwamoto EL (1996) Effects of fusaric acid on respiration in maize root mitochondria. Biol Plant 38:421–429

    Article  CAS  Google Scholar 

  • Thakur M, Sharma DR, Sharma SK (2002) In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f. sp. dianthi. Plant Cell Rep 20:825-828. doi: 10.1007/s00299-001-0412-1

  • Thomas P, Goplakrishnan C, Krishnareddy M (2011) Soft rot inciting Pectobacterium carotovorum (syn. Erwinia carotovora) is unlikely to be transmitted as a latent pathogen in micropropagated banana. Plant Cell Tiss Org Cult 105:423–429. doi:10.1007/s11240-010-9882-6

    Article  Google Scholar 

  • Viana FMP, da Costa AF (2003) Doenças do maracujazeiro. In: Freire FCO, Cardoso JE, Viana FMP (eds) Doenças de fruteiras tropicais de interesse agroindustrial. EMBRAPA, Brasília, pp 269–322 (In Portuguese)

    Google Scholar 

  • Vieira MLC, Carneiro MS (2004) Passiflora spp., passionfruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Oxford, pp 435–453

    Google Scholar 

  • Wei Q, Guo YJ, Cao HM, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na +/H + antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Org Cult 105:309–316. doi:10.1007/s11240-010-9869-3

    Article  CAS  Google Scholar 

  • Wilson CR, Tegg RS, Wilson AJ, Luckman GA, Eyles A, Yuan ZQ, Hingston LH, Conner AJ (2010) Stable and extreme resistance to common scab of potato obtained through somatic cell selection. Phytopathol 100:460–467. doi:10.1094/PHYTO-100-5-0460

    Article  Google Scholar 

  • Zerbini FM, Otoni WC, Vieira MLC (2008) Transgenic passionfruit. In: Chittaranjan K, Hall T (eds) A compendium of transgenic crop plants—tropical and subtropical fruits and nuts, 1st edn. Wiley, Berlin, pp 213–234

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. F. Laranjeira for providing the isolate of Fusarium oxysporum f. sp. passiflorae. This research was financed by the National Council for Scientific and Technological Development (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Silva Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, P.S., Otoni, W.C., Dhingra, O.D. et al. In vitro selection of yellow passion fruit genotypes for resistance to Fusarium vascular wilt. Plant Cell Tiss Organ Cult 108, 37–45 (2012). https://doi.org/10.1007/s11240-011-0009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0009-5

Keywords

Navigation