Skip to main content

Advertisement

Log in

Heart failure patients have enhanced cerebral autoregulation response in acute ischemic stroke

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The cerebrovascular effects of a failing heart-pump are largely unknown. Chronic heart failure (HF) might cause pre-conditioning effect on cerebral hemodynamics but not study so far in acute stroke. We aimed to investigate if HF induces effects in dynamic cerebral autoregulation (CA), within 6 h of symptom-onset through chronic stage of ischemic stroke. We enrolled 50 patients with acute ischemic stroke. Groups with (N = 8) and without HF and 20 heathy controls were compared. Arterial blood pressure (Finometer) and cerebral blood flow velocity (transcranial Doppler) were monitored within 6 and at 24 h from symptom-onset and at 3 months. We assessed dynamic CA by transfer function analysis and cardiac disease markers. HF associated with higher phase (better dynamic CA) at ischemic hemisphere within 6 (p = 0.042) and at 24 h (p = 0.006) but this effect was not evident at 3 months (p > 0.05). Gain and coherence trends were similar between groups. We found a positive correlation between phase and admission troponin I levels (Spearman’s r = 0.348, p = 0.044). Our findings advances on the knowledge of how brain and heart interact in acute ischemic stroke by showing a sustained dynamic cerebral autoregulation response in HF patients mainly with severe aortic valve disease. Understanding the physiological mechanisms that govern this complex interplay can be useful to find novel therapeutic targets which can improve outcome in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Haeusler KG, Laufs U, Endres M (2011) Chronic heart failure and ischemic stroke. Stroke 42(10):2977–2982. https://doi.org/10.1161/STROKEAHA.111.628479

    Article  PubMed  Google Scholar 

  2. Koch S, Della-Morte D, Dave KR, Sacco RL, Perez-Pinzon MA (2014) Biomarkers for ischemic preconditioning: finding the responders. J Cereb Blood Flow Metab 34(6):933–941. https://doi.org/10.1038/jcbfm.2014.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cornwell WK 3rd, Levine BD (2015) Patients with heart failure with reduced ejection fraction have exaggerated reductions in cerebral blood flow during upright posture. JACC Heart Fail 3(2):176–179. https://doi.org/10.1016/j.jchf.2014.10.006

    Article  PubMed  Google Scholar 

  4. van Lieshout JJ, Secher NH (2008) Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Point: Sympathetic activity does influence cerebral blood flow. J Appl Physiol 105(4):1364–1366

    PubMed  Google Scholar 

  5. Caldas JR, Panerai RB, Haunton VJ, Almeida JP, Ferreira GS, Camara L, Nogueira RC, Bor-Seng-Shu E, Oliveira ML, Groehs RR, Ferreira-Santos L, Teixeira MJ, Galas FR, Robinson TG, Jatene FB, Hajjar LA (2017) Cerebral blood flow autoregulation in ischemic heart failure. Am J Physiol Regul Integr Comp Physiol 312(1):R108–R113. https://doi.org/10.1152/ajpregu.00361.2016

    Article  CAS  PubMed  Google Scholar 

  6. Georgiadis D, Sievert M, Cencetti S, Uhlmann F, Krivokuca M, Zierz S, Werdan K (2000) Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur Heart J 21(5):407–413. https://doi.org/10.1053/euhj.1999.1742

    Article  CAS  PubMed  Google Scholar 

  7. Madureira J, Castro P, Azevedo E (2016) Demographic and systemic hemodynamic influences in mechanisms of cerebrovascular regulation in healthy adults. J Stroke Cerebrovasc Dis. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.003

    Article  PubMed  Google Scholar 

  8. Meel-van den Abeelen AS, van Beek AH, Slump CH, Panerai RB, Claassen JA (2014) Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow. Med Eng Phys 36(5):563–575. https://doi.org/10.1016/j.medengphy.2014.02.001

    Article  PubMed  Google Scholar 

  9. Nakagawa K, Serrador JM, LaRose SL, Sorond FA (2011) Dynamic cerebral autoregulation after intracerebral hemorrhage: a case-control study. BMC Neurol 11:108. https://doi.org/10.1186/1471-2377-11-108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Purkayastha S, Fadar O, Mehregan A, Salat DH, Moscufo N, Meier DS, Guttmann CR, Fisher ND, Lipsitz LA, Sorond FA (2014) Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J Cereb Blood Flow Metab 34(2):228–234. https://doi.org/10.1038/jcbfm.2013.180

    Article  PubMed  Google Scholar 

  11. Castro P, Santos R, Freitas J, Rosengarten B, Panerai R, Azevedo E (2012) Adaptation of cerebral pressure-velocity hemodynamic changes of neurovascular coupling to orthostatic challenge. Perspect Med. https://doi.org/10.1016/j.permed.2012.1002.1052

    Article  Google Scholar 

  12. Aries MJ, Elting JW, De Keyser J, Kremer BP, Vroomen PC (2010) Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41(11):2697–2704. https://doi.org/10.1161/strokeaha.110.594168

    Article  PubMed  Google Scholar 

  13. Castro P, Azevedo E, Serrador J, Rocha I, Sorond F (2017) Hemorrhagic transformation and cerebral edema in acute ischemic stroke: link to cerebral autoregulation. J Neurol Sci 372:256–261. https://doi.org/10.1177/0271678x16682509

    Article  PubMed  Google Scholar 

  14. Castro P, Serrador J, Rocha I, Sorond F, Azevedo E (2017) Efficacy of cerebral autoregulation in early ischemic stroke predicts smaller infarcts and better outcomes. Front Neurol. https://doi.org/10.3389/fneur.2017.00113

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force M (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  16. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    PubMed  PubMed Central  Google Scholar 

  17. Pepi M, Evangelista A, Nihoyannopoulos P, Flachskampf FA, Athanassopoulos G, Colonna P, Habib G, Ringelstein EB, Sicari R, Zamorano JL, Sitges M, Caso P, European Association of E (2010) Recommendations for echocardiography use in the diagnosis and management of cardiac sources of embolism: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 11(6):461–476. https://doi.org/10.1093/ejechocard/jeq045

    Article  PubMed  Google Scholar 

  18. Panerai RB (2003) The critical closing pressure of the cerebral circulation. Med Eng Phys 25(8):621–632

    CAS  PubMed  Google Scholar 

  19. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1):45–52

    CAS  PubMed  Google Scholar 

  20. Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274(1 Pt 2):H233–241

    CAS  PubMed  Google Scholar 

  21. Diehl RR, Linden D, Lucke D, Berlit P (1995) Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 26(10):1801–1804

    CAS  PubMed  Google Scholar 

  22. Sims JR, Gharai LR, Schaefer PW, Vangel M, Rosenthal ES, Lev MH, Schwamm LH (2009) ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes. Neurology 72(24):2104–2110. https://doi.org/10.1212/WNL.0b013e3181aa5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reinhard M, Roth M, Guschlbauer B, Harloff A, Timmer J, Czosnyka M, Hetzel A (2005) Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke 36(8):1684–1689. https://doi.org/10.1161/01.STR.0000173183.36331.ee

    Article  CAS  PubMed  Google Scholar 

  24. Reinhard M, Neunhoeffer F, Gerds TA, Niesen WD, Buttler KJ, Timmer J, Schmidt B, Czosnyka M, Weiller C, Hetzel A (2010) Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med 36(2):264–271. https://doi.org/10.1007/s00134-009-1698-7

    Article  PubMed  Google Scholar 

  25. Hu HH, Kuo TB, Wong WJ, Luk YO, Chern CM, Hsu LC, Sheng WY (1999) Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. J Cereb Blood Flow Metab 19(4):460–465. https://doi.org/10.1097/00004647-199904000-00012

    Article  CAS  PubMed  Google Scholar 

  26. Reinhard M, Hetzel A, Lauk M, Lucking CH (2001) Dynamic cerebral autoregulation testing as a diagnostic tool in patients with carotid artery stenosis. Neurol Res 23(1):55–63. https://doi.org/10.1179/016164101101198299

    Article  CAS  PubMed  Google Scholar 

  27. Otite F, Mink S, Tan CO, Puri A, Zamani AA, Mehregan A, Chou S, Orzell S, Purkayastha S, Du R, Sorond FA (2014) Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke 45(3):677–682. https://doi.org/10.1161/strokeaha.113.002630

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Raedt S, De Vos A, De Keyser J (2015) Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci 348(1–2):24–34. https://doi.org/10.1016/j.jns.2014.12.007

    Article  PubMed  Google Scholar 

  29. Castro PM, Santos R, Freitas J, Panerai RB, Azevedo E (2014) Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects. J Appl Physiol (Bethesda, Md: 1985) 117(3):205–213. https://doi.org/10.1152/japplphysiol.00893.2013

    Article  Google Scholar 

  30. Li G, Lu WH, Wu XW, Cheng J, Ai R, Zhou ZH, Tang ZZ (2015) Admission hypoxia-inducible factor 1alpha levels and in-hospital mortality in patients with acute decompensated heart failure. BMC Cardiovasc Disord 15:79. https://doi.org/10.1186/s12872-015-0073-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorond FA, Tan CO, LaRose S, Monk AD, Fichorova R, Ryan S, Lipsitz LA (2015) Deferoxamine, cerebrovascular hemodynamics, and vascular aging: potential role for hypoxia-inducible transcription factor-1-regulated pathways. Stroke 46(9):2576–2583. https://doi.org/10.1161/STROKEAHA.115.009906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G, Esteves F, Wharton SB, Shaw PJ, O'Brien JT, Ince PG, Function MRCC, Ageing Neuropathology Study G (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37(6):1391–1398. https://doi.org/10.1161/01.STR.0000221308.94473.14

    Article  PubMed  Google Scholar 

  33. Bernaudin M, Sharp FR (2004) Methods to detect hypoxia-induced ischemic tolerance in the brain. Methods Enzymol 381:399–416. https://doi.org/10.1016/S0076-6879(04)81027-9

    Article  CAS  PubMed  Google Scholar 

  34. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22(5):520–525. https://doi.org/10.1097/00004647-200205000-00003

    Article  CAS  PubMed  Google Scholar 

  35. Chu K, Jung KH, Kim SJ, Lee ST, Kim J, Park HK, Song EC, Kim SU, Kim M, Lee SK, Roh JK (2008) Transplantation of human neural stem cells protect against ischemia in a preventive mode via hypoxia-inducible factor-1alpha stabilization in the host brain. Brain Res 1207:182–192. https://doi.org/10.1016/j.brainres.2008.02.043

    Article  CAS  PubMed  Google Scholar 

  36. Takuwa H, Matsuura T, Bakalova R, Obata T, Kanno I (2010) Contribution of nitric oxide to cerebral blood flow regulation under hypoxia in rats. J Physiol Sci 60(6):399–406. https://doi.org/10.1007/s12576-010-0108-9

    Article  CAS  PubMed  Google Scholar 

  37. White RP, Vallance P, Markus HS (2000) Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond) 99(6):555–560

    CAS  Google Scholar 

  38. Azevedo E, Castro P, Santos R, Freitas J, Coelho T, Rosengarten B, Panerai R (2011) Autonomic dysfunction affects cerebral neurovascular coupling. Clin Auton Res 21(6):395–403. https://doi.org/10.1007/s10286-011-0129-3

    Article  PubMed  Google Scholar 

  39. Castro PM, Santos R, Freitas J, Panerai RB, Azevedo E (2014) Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects. J Appl Physiol 117(3):205–213. https://doi.org/10.1152/japplphysiol.00893.2013

    Article  PubMed  Google Scholar 

  40. Castro P, Azevedo E, Sorond F (2018) Cerebral autoregulation in stroke. Curr Atheroscler Rep 20(8):37. https://doi.org/10.1007/s11883-018-0739-5

    Article  PubMed  Google Scholar 

  41. Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH (1999) Effects of CO2 on dynamic cerebral autoregulation measurement. Physiol Meas 20(3):265–275

    CAS  PubMed  Google Scholar 

Download references

Funding

This study received public national grant from Fundação para a Ciência e a Tecnologia (FCT), Portugal, with the number PTDC/SAU-ORG/113329/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Castro.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11239_2020_2166_MOESM1_ESM.tif

Supplementary file1 (TIF 159 kb). Supplemental Figure 1 Averaged spectral curves of cerebral autoregulation parameters – coherence, gain and phase – of groups patients with chronic Heart failure (HF) and without HF and healthy controls. In stroke patients, these were obtained < 6 hours from symptom onset. Very Low Frequency (VLF, 0.02-0.05 Hz; HF), low frequency (LF, 0.05-0.20 Hz) to high frequency (HF, 0.20-0.5 Hz). Repeated-measures ANOVA showed a significant difference (P<0.05) in VLF phase only when comparing the group of patients with HF versus group without HF or the healthy control group and it is highlighted with bracket with asterisk (*). A detailed statistical analysis and TFA values are presented in Table 2

Supplementary file2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, P., Serrador, J., Rocha, I. et al. Heart failure patients have enhanced cerebral autoregulation response in acute ischemic stroke. J Thromb Thrombolysis 50, 753–761 (2020). https://doi.org/10.1007/s11239-020-02166-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02166-9

Keywords

Navigation