Skip to main content

Advertisement

Log in

Computational investigation of pyrrolidin derivatives as novel GPX4/MDM2–p53 inhibitors using 2D/3D-QSAR, ADME/toxicity, molecular docking, molecular dynamics simulations, and MM-GBSA free energy

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The p53 is a tumor suppressor protein that adjusts cell cycle and growth arrest as well as genes that restore DNA damage and apoptosis. Murine double minute 2 (MDM2) is a main p53 antagonist. We created a novel QSAR model using a series of highly active spiro [pyrrolidin-3,2-oxindoles] that consisted of 29 compounds that were experimentally validated to inhibit the MDM2-p53 interaction. Three optimal models have been developed CoMFA/E + S, CoMSIA/S + H + A, and HQSAR have revealed good statistical results, but the CoMSIA mode only which validates all the external validation tests applied successfully. Based on the CoMSIA/S + H + A model was carefully chosen to design four compounds with values of inhibitory activity greater than the highly active compound in the data set. The newly designed compounds were docked in the target receptor binding site (ID: 4LWU). The newly designed compound Pred 01 showed the highest affinity with a value of − 9.4 kcal/mol, while compound No. 04 which represents the data set and control compound (Nutlin-3) showed binding energies of the order of − 8.8 kcal/mol and − 8.2 kcal/mol, respectively. In addition, ADME/toxicity prediction and the drug-likeness predicted out of Lipinski’s rule and Veber’s rule were estimated; the results obtained demonstrate that the proposed molecules involve good oral bioavailability and an ability to diffuse through different biological barriers. For in-depth study, The Pred01/receptor, No. 04/receptor, and Nutlin-3/receptor complexes were selected via dynamic simulation analyzes with a simulation time of 100 ns and, also, their free binding energy was examined operating the MM-GBSA approach. The molecular docking results obtained accentuate the crucial residues responsible for the ligand/protein interaction, providing insight into the mode of interaction. The MD simulation analysis confirms the conformational stability of the selected complexes during the MD trajectory, and the fluctuations recorded are insignificant. The results of MM-GBSA reveal that the new compound Pred 01 exhibits the lowest free energy, which confirms the result of molecular docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  3. Kühn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radical Biol Med 33:154–172.https://doi.org/10.1016/S0891-5849(02)00855-9

  4. Tarangelo A et al (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:569–575.https://doi.org/10.1016/j.celrep.2017.12.077

  5. Jiang L et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie Y et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704. https://doi.org/10.1038/nature12912

    Article  CAS  PubMed  Google Scholar 

  7. Kandoth C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature. https://doi.org/10.1038/nature12634

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lawrence MS et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501. https://doi.org/10.1038/nature12912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gollner A, Weinstabl H, Fuchs JE, Rudolph D, Garavel G, Hofbauer KS, Karolyi-Oezguer J,  Gmaschitz G, Hela W, Kerres N, Grondal E, Werni P, Ramharter J, Broeker J, McConnell DB (2019) Targeted Synthesis of Complex Spiro[3H‐indole‐3,2′‐pyrrolidin]‐2(1H)‐ones by Intramolecular Cyclization of Azomethine Ylides: Highly Potent MDM2–p53 Inhibitors. ChemMedChem 14:88–93. https://doi.org/10.1002/cmdc.201800617

  10. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208. https://doi.org/10.1038/378206a0

    Article  CAS  PubMed  Google Scholar 

  11. Wang F, Li Y, Ma Z, Wang X, Wang Y (2012) Structural determinants of benzodiazepinedione/peptide-based p53-HDM 2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model 18:295–306. https://doi.org/10.1007/s00894-011-1041-4

    Article  CAS  PubMed  Google Scholar 

  12. Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848. https://doi.org/10.1126/science.1092472

    Article  CAS  PubMed  Google Scholar 

  13. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115. https://doi.org/10.2174/156802610790232260

    Article  CAS  PubMed  Google Scholar 

  14. TABTI K (2020) QSAR studies of new compounds based on thiazole derivatives as PIN1 inhibitors via statistical methods. RHAZES: Green and Applied Chemistry 9:70–91. https://doi.org/10.48419/IMIST.PRSM/rhazes-v9.21394

  15. Liu S-J et al (2021) Design, synthesis, and biological evaluation of nitroisoxazole-containing spiro [pyrrolidin-oxindole] derivatives as novel glutathione peroxidase 4/mouse double minute 2 dual inhibitors that inhibit breast adenocarcinoma cell proliferation. Eur J Med Chem 217:113359. https://doi.org/10.1016/j.ejmech.2021.113359

    Article  CAS  PubMed  Google Scholar 

  16. Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51:4359–4369. https://doi.org/10.1021/jm800219f

    Article  CAS  PubMed  Google Scholar 

  17. Deng X et al (2014) Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J Med Chem 57:5381–5394. https://doi.org/10.1021/jm500481t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muzalevskiy VM, Shastin AV, Balenkova ES, Haufe G, Nenajdenko VG (2009) Synthesis of trifluoromethyl pyrroles and their benzo analogues. Synthesis 2009:3905–3929. https://doi.org/10.1055/s-0029-1217080

    Article  CAS  Google Scholar 

  19. Huang WS, Schlinquer C, Poisson T, Pannecoucke X, Charette AB, Jubault P (2018) General catalytic enantioselective access to monohalomethyl and trifluoromethyl cyclopropanes. Chem A Eur J 24:10339–10343. https://doi.org/10.1002/chem.201802685

  20. Mei H et al (2020) Fluorine-containing drugs approved by the FDA in 2019. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.03.050

    Article  Google Scholar 

  21. El Mchichi L et al (2021) In silico design of novel Pyrazole derivatives containing thiourea skeleton as anti-cancer agents using: 3D QSAR, Drug-Likeness studies, ADMET prediction and molecular docking. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.03.152

  22. TABTI K, Sbai A, Maghat H, Bouachrine M, Lakhlifi T (2020) 2D and 3D-QSAR/CoMSIA comparative study on a series of thiazole derivatives as SDHI inhibitors. Maghrebian Journal of Pure and Applied Science 6:73–90. https://doi.org/10.48383/IMIST.PRSM/mjpas-v6i2.23108

  23. Clark M, Cramer RD III, Van Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10:982–1012. https://doi.org/10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  24. Sepehri A, Sarrafzadeh M-H (2018) Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chem Eng Process Process Intensif 128:10–18. https://doi.org/10.1016/j.cep.2018.04.006

    Article  CAS  Google Scholar 

  25. Abdizadeh T et al (2017) Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  26. Pourbasheer E, Bazl R, Amanlou M (2014) Molecular docking and 3D-QSAR studies on the MAPKAP-K2 inhibitors. Med Chem Res 23:2252–2263. https://doi.org/10.1007/s00044-013-0820-0

    Article  CAS  Google Scholar 

  27. Cramer RD, Wendt B (2014) Template CoMFA: The 3D-QSAR Grail? J Chem Inf Model 5:660–671. https://doi.org/10.1021/ci400696v

    Article  CAS  Google Scholar 

  28. Gomes VM, Fernandes AM, Faia A, Melo-Pinto P (2017) Comparison of different approaches for the prediction of sugar content in new vintages of whole Port wine grape berries using hyperspectral imaging. Comput Electron Agric 140:244–254. https://doi.org/10.1016/j.compag.2017.06.009

    Article  Google Scholar 

  29. Golbraikh A, Tropsha A (2002) “Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  30. Hailey DW et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667. https://doi.org/10.1016/j.cell.2010.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pratim Roy P, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701. https://doi.org/10.3390/molecules14051660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Namasivayam V, Günther R (2007) PSO@ AUTODOCK: A fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70:475–484. https://doi.org/10.1111/j.1747-0285.2007.00588.x

    Article  CAS  PubMed  Google Scholar 

  33. Tabti K, Elmchichi L, Sbai A, Maghat H, Bouachrine M, Lakhlifi T (2021) In silico design of novel PIN1 inhibitors by combined of 3D-QSAR, molecular docking, molecular dynamic simulation and ADMET studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.132291

    Article  Google Scholar 

  34. Bowers KJ et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters 2006:43–43. https://doi.org/10.1109/SC.2006.54

    Article  Google Scholar 

  35. Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83:4069–4074. https://doi.org/10.1063/1.449071

    Article  CAS  Google Scholar 

  36. Théry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel J, Woolley J (2020) Necrotizing periodontal disease: oral manifestation of COVID-19. Oral Dis. https://doi.org/10.1111/odi.1346

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bhowmick GD et al (2020) Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. NPJ Clean Water 3:1–8. https://doi.org/10.1038/s41545-020-0079-1

    Article  CAS  Google Scholar 

  39. Keller TH, Pichota A, Yin Z (2006) A practical view of ‘druggability. Curr Opin Chem Biol 10:357–361. https://doi.org/10.1016/j.cbpa.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  40. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  41. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(2615–2623). https://doi.org/10.1021/jm020017n

  42. Remko M, Swart M, Bickelhaupt FM (2006) Theoretical study of structure, pKa, lipophilicity, solubility, absorption, and polar surface area of some centrally acting antihypertensives. Bioorg Med Chem 14:1715–1728. https://doi.org/10.1016/j.bmc.2005.10.020

    Article  CAS  PubMed  Google Scholar 

  43. Kar S, Leszczynski J (2020) Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin Drug Discov 15:1473–1487. https://doi.org/10.1080/17460441.2020.1798926

    Article  CAS  PubMed  Google Scholar 

  44. Bringmann G, Rummey C (2003) 3D QSAR investigations on antimalarial naphthylisoquinoline alkaloids by comparative molecular similarity indices analysis (CoMSIA), based on different alignment approaches. J Chem Inf Comput Sci 43:304–316. https://doi.org/10.1021/ci025570s

    Article  CAS  PubMed  Google Scholar 

  45. Monge A (2006) Création et utilisation de chimiothèques optimisées pour la recherche «in silico» de nouveaux composés bioactifs. Université d’Orléans

  46. Clark DE (2003) In silico prediction of blood–brain barrier permeation. Drug Discov Today 8:927–933. https://doi.org/10.1016/S1359-6446(03)02827-7

    Article  CAS  PubMed  Google Scholar 

  47. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thapar MM (2004) Pharmacokinetics and dynamics of atovaquone and proguanil (Malarone R). Institutionen för medicin/Department of Medicine

Download references

Acknowledgements

We are grateful to the “Association Marocaine des Chimistes Théoriciens” (AMCT) and “Moroccan Centre of Scientific and Technique research” (CNRST) for their pertinent help concerning the programs.

Author information

Authors and Affiliations

Authors

Contributions

Kamal Tabti: Data curation, Writing – original draft; Soukayna Baammi review and conducted in silico studies; Larbi El mchichi Visualization, Investigation; Abdelouahid Sbai: Conceptualization, Methodology, Software; Hamid Maghat: Supervision. Mohammed Bouachrine Software, Validation; Tahar Lakhlifi: Writing – review & editing. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Kamal Tabti or Abdelouahid Sbai.

Ethics declarations

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabti, K., Baammi, S., ElMchichi, L. et al. Computational investigation of pyrrolidin derivatives as novel GPX4/MDM2–p53 inhibitors using 2D/3D-QSAR, ADME/toxicity, molecular docking, molecular dynamics simulations, and MM-GBSA free energy. Struct Chem 33, 1019–1039 (2022). https://doi.org/10.1007/s11224-022-01903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01903-5

Keywords

Navigation