Skip to main content
Log in

On the Mathematical Modeling of a MEMS-Based Sensor for Simultaneous Measurement of Fluids Viscosity and Density

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

This paper discusses a novel microelectromechanical sensor for simultaneous measurement of fluids viscosity and density. Its operation is based on a longitudinal piezoelectric actuation of a micro-beam in a laminar fluid field. The proposed sensor consists of a micro-beam and a micro-cylindrical sensing element immersed in a fluid. In order to actuate the sensor longitudinally, the micro-beam is bonded with two piezoelectric layers on its upper and lower surfaces which are subjected to an AC voltage. The coupled governing partial differential equations of the micro-beam and fluid field have been derived. The obtained governing differential equations with time-varying boundary conditions have been transformed to an enhanced form with homogeneous boundary conditions. The enhanced equations have been discretized over the beam and fluid domain using Galerkin based reduced order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been investigated. The effects of viscosity and density of fluids and geometrical parameters of the sensor on sensing element response have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ebadian, M. A., Kinzy Jones, W., Moore, J. E., & Dillon, J. (1996). Sensors for viscosity and shear strength measurement. Topical report (DE-FG21-95EW55094).

  2. Stoyanov, P. G., & Grimes, C. A. (2000). A remote grey magnetostrictive viscosity sensor. Sensors and Actuators, A: Physical, 80, 8–14.

    Article  Google Scholar 

  3. Martin, B. A., Wenzel, S. W., & White, R. W. (1998). Viscosity and density sensing with ultrasonic plate waves. Sensors and Actuators, A: Physical, 22, 704–708.

    Article  Google Scholar 

  4. Ahmed, N., Nino, D. F., & Moy, V. T. (2001). Measurement of solution viscosity by atomic force microscopy. Review of Scientific Instruments, 72(6), 2731–2734.

    Article  Google Scholar 

  5. Shih, W. Y., Li, X. P., Gu, H. M., Shih, W. H., & Aksay, I. A. (2001). Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. Journal of Applied Physics, 98, 1497–1505.

    Article  Google Scholar 

  6. Agoston, A., Keplinger, F., & Jakopy, B. (2005). Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sensors and Actuators, A: Physical, 123, 82–86.

    Article  Google Scholar 

  7. Enoksson, P., Stemme, G., & Stemme, E. (1995). Fluid density sensors based on resonance vibration. Sensors and Actuators A: Physical, 47(1), 327–331.

    Article  Google Scholar 

  8. McLoughlin, N., Lee, S. L., & Hahner, G. (2006). Simultaneous determination of density and viscosity of liquids based on resonance curve of uncalibrated microcantilevers. Applied Physics Letter, 89, 184106.

    Article  Google Scholar 

  9. Goubaidoulline, C., Reuber, J., Merz, F., & Johannsmann, D. (2005). Simultaneous determination of density and viscosity of liquids based on quartz-crystal resonators covered with nanoporous alumina. Applied Physics, 98, 014305.

    Article  Google Scholar 

  10. Greenwood, M. S., Adamson, J. D., & Bond, L. J. (2006). Measurment of viscosity-density product using multiple reflections of ultrasonic shear horizontal waves. Ultrasonics, 44, e1031–e1036.

    Article  Google Scholar 

  11. Wilson, T. L., Campbell, G. A., & Mutharasan, R. (2007). Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sensors and Actuators A: Physical, 138, 44–51.

    Article  Google Scholar 

  12. Castille, C. H., Dufour, I., & Lucat, C. (2010). Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media. Applied Physics Letters, American Institute of Physics (AIP), 96, 154102.

    Article  Google Scholar 

  13. Heinisch, M., Voglhuber-Brunnmaier, T., Reichel, E. K., Dufour, I., & Jakoby, B. (2015). Electromagnetically driven torsional resonators for viscosity and mass density sensing applications. Sensors and Actuators A Physical, 229, 182–191.

    Article  Google Scholar 

  14. Heinisch, M., Voglhuber-Brunnmaier, T., Reichel, E. K., Dufour, I., & Jakoby, B. (2015). Application of resonant tuning forks with circular and rectangular crosssections for precise mass density and viscosity measurements. Sensors and Actuators A Physical, 226, 163–174.

    Article  Google Scholar 

  15. Heinisch, M., Reichel, E. K., Dufour, I., & Jakoby, B. (2014). Modeling and experimental investigation of resonant viscosity and mass density sensors considering their cross sensitivity to temperature. Procedia Engineering, 87, 472–475.

    Article  Google Scholar 

  16. Ashour, O. N., Chaudhry, Z. A., & Rogers, C. A. (1996). Liquid viscosity measurement using a longitudinally vibrating PZT ceramic and electric impedance measurements. In Proceedings of SPIE 2718, smart structures and materials 1996: Smart sensing, processing, and instrumentation (Vol. 69).

  17. Bujard, M., Tittmann, B. R., Ahlberg, L. A., & Cohen-Tenoudji, F. (1987). Dynamic viscosity measurements of fluids employing resonance characteristics of a piezoelectric element vibration in the shear mode introduction. In D. O. Thompson & D. E. Chimenti (Eds.), Review of progress in quantitative nondestructive evaluation. Berlin: Springer.

    Google Scholar 

  18. Rezazadeh, G., Ghanbari, M., Mirzaee, I., & Keivani, A. (2010). On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement, 43, 1516–1524.

    Article  Google Scholar 

  19. Ghanbari, M., Hossainpour, S., & Rezazadeh, G. (2015). On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties. Applied Physics A, 121, 651–663.

    Article  Google Scholar 

  20. Payam, A. F., Trewby, W., & Voitchovsky, K. (2017). Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever. Analyst, 142, 1492–1498.

    Article  Google Scholar 

  21. Wang, C. H., Liao, Y., Chu, J., & Hsueh, C. H. (2016). Viscous flow and viscosity measurement of low-temperature imprintable AuCuSi thin film metallic glasses investigated by nanoindentation creep. Materials and Design, 123, 112–119.

    Article  Google Scholar 

  22. Bircher, B. A., Krenger, R., & Braun, T. (2016). Automated high-throughput viscosity and density sensor using nanomechanical resonators. Sensors and Actuators B: Chemical, 223, 784–790.

    Article  Google Scholar 

  23. Gonzalez, M., Seren, H. R., Ham, G., Buzi, E., Bernero, G., & Deffenbaugh, M. (2018). Viscosity and density measurements using mechanical oscillators in oil and gas applications. IEEE Transactions on Instrumentation and Measurement, 67, 804–810.

    Article  Google Scholar 

  24. Zhao, L., Hu, Y., Wang, T., Ding, J., Liu, X., Zhao, Y., et al. (2016). A MEMS resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes. Sensors, 16, 830.

    Article  Google Scholar 

  25. Puchades, I., Fuller, L. F., & Lyshevski, S. E. (2017). Analysis and stability of a silicon-based thermally MEMS viscosity sensor. In IEEE 37 the international conference on electronics and nanotechnology.

  26. Kim, D., Hong, S., Jang, J., & Park, J. (2017). Determination of fluid density and viscosity by analyzing flexural wave propagations on the vibrating micro-cantilever. Sensors, 17, 2466.

    Article  Google Scholar 

  27. Peschel, G.,  Adlfinger, K. H. (1970). Viscosity anomalies in liquid surface zones, part III, The expermental method. Physical Chemistry Chemical Physics, 74, 351–357.  

    Google Scholar 

  28. Rezazadeh, G., & Tahmasebi, A. H. (2007). Application of piezoelectric layers in electrostatic MEM actuators: Controlling of pull-in voltage. Microsystem Technology, 12, 1163–1170.

    Article  Google Scholar 

  29. Tse, F. S., Morse, I. E., & Hinkle, R. T. (1978). Mechanical vibrations theory and applications. Boston: Allyn and Bocon.

    Google Scholar 

  30. Xing, S., Jiancheng, F., & Wei, S. H. (2009). Circuit for close-loop capacitive micro-accelerometers. Journal of Beijing University of Aeronautics and Astronautics, 35(3), 384–388.

    Google Scholar 

  31. Chandel, T., & Singh, B. (2014). The state of art survey on micro cantilevers for MEMS devices. Journal of electrical and electronics engineering, 9, 8–15.

    Google Scholar 

  32. Chebykin, D., Heller, H.-P., Dubberstein, T., Korobeinikov, I., & Volkova, O. (2017). Viscosity measurement of slags using rotating bob and vibrating finger viscometer. ISIJ International, 57, 1319–1326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ghanbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, G., Ghanbari, M. On the Mathematical Modeling of a MEMS-Based Sensor for Simultaneous Measurement of Fluids Viscosity and Density. Sens Imaging 19, 27 (2018). https://doi.org/10.1007/s11220-018-0213-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0213-z

Keywords

Navigation