Skip to main content
Log in

On the modeling of a piezoellectrically actuated micro-sensor for measurement of microscale fluid physical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Ebadian, W. Kinzy Jones, J.E. Moore, J. Dillon, Sensors for Viscosity and Shear Strength Measurement. Topical Report (DE-FG21-95EW55094) (1996)

  2. P.G. Stoyanov, C.A. Grimes, A remote grey magnetostrictive viscosity sensor. Sens. Actuat. A 80, 8–14 (2000)

    Article  Google Scholar 

  3. B.A. Martin, S.W. Wenzel, R.W. White, Viscosity and density sensing with ultrasonic plate waves. Sens. Actuators A 22, 704–708 (1998)

    Article  Google Scholar 

  4. W.Y. Shih, X.P. Li, H.M. Gu, W.H. Shih, I.A. Aksay, Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J. Appl. Phys. 98, 1497–1505 (2001)

    Article  ADS  Google Scholar 

  5. A. Agoston, F. Keplinger, B. Jakopy, Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sens. Actuators A 123(124), 82–86 (2005)

    Article  Google Scholar 

  6. P. Enoksson, G. Stemme, G. Stemme, Fluid density sensors based on resonance vibration. Sens. Actuators A 46, 327 (1995)

    Article  Google Scholar 

  7. J.E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscopy. J. Appl. Phys. 84, 64–76 (1998)

    Article  ADS  Google Scholar 

  8. Y. Jing, J.B. Luo, X.X. Yi, X. Gu, Design and evaluation of PZT thin-film micro-actuator for hard disk drivers. Sens. Actuators A 116, 329–335 (2004)

    Article  Google Scholar 

  9. I. Kanno, H. Kotera, K. Wasa, Measurement of transverse piezoelectric properties of PZT thin films. Sens. Actuators A 107, 68–74 (2003)

    Article  Google Scholar 

  10. N. McLoughlin, S.L. Lee, G. Hahner, Simultaneous determination of density and viscosity of liquids based on resonance curve of uncalibrated microcantilevers. Appl. Phys. Lett. 89(18), 184106 (2006). doi:10.1063/1.2374867

    Article  ADS  Google Scholar 

  11. T.L. Wilson, G.A. Campbell, R. Mutharasan, Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sens. Actuators A 138, 44–51 (2007)

    Article  Google Scholar 

  12. G. Rezazadeh, M. Ghanbari, I. Mirzaee, On the modeling of piezoelectrically actuated microsensor for Simultaneous measurement of fluids viscosity and density. J. Meas. 43, 1516–1524 (2010)

    Article  Google Scholar 

  13. Ch. Castille, I. Dufour, C. Lucat, Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media. Appl. Phys. Lett. 96, 154102 (2010)

    Article  ADS  Google Scholar 

  14. M. Heinisch, T. Voglhuber-Brunnmaier, E.K. Reichel, I. Dufour, B. Jakoby, Electromagnetically driven torsional resonators for viscosity and mass density sensing applications. Sens. Actuators A Phys. 229, 182–191 (2015)

    Article  Google Scholar 

  15. M. Heinisch, T. Voglhuber-Brunnmaier, E.K. Reichel, I. Dufour, B. Jakoby, Application of resonant tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements. Sens. Actuators A Phys. 226, 163–174 (2015)

    Article  Google Scholar 

  16. M. Heinisch, E.K. Reichel, I. Dufour, B. Jakoby, Modeling and experimental investigation of resonant viscosity and mass density sensors considering their cross sensitivity to temperature. Procedia Eng. 87, 472–475 (2014)

    Article  Google Scholar 

  17. O.N. Ashour, Z.A. Chaudhry, C.A. Rogers, Liquid viscosity measurement using a longitudinally vibrating PZT ceramic and electric impedance measurements. in Proceedings of SPIE 2718, Smart Structures and Materials 1996: Smart Sensing, Processing, and Instrumentation, 69 (May 30, 1996)

  18. M. Bujard, B. Tittmann, L.A. RAhlberg, F. Cohen-Tenoudji, Dynamic viscosity measurements of fluids employing resonance characteristics of a piezoelectric element vibration in the shear mode introduction. in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1987)

  19. A. Kucaba-Pietal, Microchannels flow modeling with the micro-polar fluid theory. Bull. Pol. Acad. Sci. Technol. 53, 209–214 (2004)

    Google Scholar 

  20. A. Kucaba-Pietal, Applicability of the micropolar fluid theory in solving microfluidics Problems. in Proceedings of the 1st European Conference on Microfluidics, Bologna, December 10–12, 2008

  21. J. Chen, C. Liang, J.D. Lee, Theory and simulation of micropolar fluid dynamics. J. Nanoeng. Nanosyst. 224, 31–39 (2011)

    Google Scholar 

  22. A. Yavari, S. Sarkani, E.T. Moyer, On fractural cracks in micro-polar elastic solids. J. Appl. Mech. 69, 45–54 (2002)

    Article  ADS  MATH  Google Scholar 

  23. A.C. Eringen, Theory of micro-polar fluids. J Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  24. A.C. Eringen, Theory of thermo micro-polar fluids. J. Math. Anal. Appl. 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  25. K.H. Adlfinger, G. Pechel, Viscosity anomalies in liquid surface zones, part III. Deut. Bunsenges. Phys. Chem. 74, 351–357 (1970)

    Google Scholar 

  26. K.A. Kline, S.J. Allen, Nonsteady flows of fluids with microstructure. Phys. Fluids 13, 263–283 (1970)

    Article  ADS  MATH  Google Scholar 

  27. A.J. Willson, Basic flows of micropolar liquid. Appl. Sci. Res. 20, 335–338 (1969)

    Article  Google Scholar 

  28. G. Rezazadeh, A. Tahmasebi, Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltag. J. Microsyst. Technol. 12, 1163–1170 (2006)

    Article  Google Scholar 

  29. E.F. Crawley, J. de Luis, Use of piezoelectric actuators as elements of intelligent structures. AIAA 25, 1373–1385 (1987)

    Article  Google Scholar 

  30. G. Ahmadi, Self-similar solution of incompressible micro-polar boundary layer flow over a semi-finite plate,”. Int. J. Eng. Sci. 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  31. F.S. Tse, I.E. Morse, R.T. Hinkle, Mechanical Vibrations: Theory and Applications, Chapter 7, 2nd edn. (Allyn and Bacon, Boston, 1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Hossainpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, M., Hossainpour, S. & Rezazadeh, G. On the modeling of a piezoellectrically actuated micro-sensor for measurement of microscale fluid physical properties. Appl. Phys. A 121, 651–663 (2015). https://doi.org/10.1007/s00339-015-9452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9452-1

Keywords

Navigation