Skip to main content
Log in

The Diversity of Planetary Atmospheric Chemistry

Lessons and Challenges from Our Solar System and Extrasolar Planets

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Atmospheres in our solar system range from oxidizing to reducing, transient to dense, veiled by clouds and hazes to transparent. Observations already suggest that exoplanets exhibit an even more diverse range of atmospheric chemistry and composition. Nevertheless, there are commonalities across the atmospheres of our solar system that provide valuable guidance and lessons for observing and interpreting exoplanetary atmospheres. Lessons gleaned from decades of study of planetary atmospheric chemistry are synthesized and explored to understand their implications for exoplanets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • M. Agúndez, V. Parmentier, O. Venot, F. Hersant, F. Selsis, Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b. Astron. Astrophys. 564, A73 (2014)

    Article  ADS  Google Scholar 

  • K. Aleksankina, S. Reis, M. Vieno, M.R. Heal, Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model. Atmos. Chem. Phys. 19, 2881–2898 (2019)

    Article  ADS  Google Scholar 

  • D.A. Allen, J.W. Crawford, Cloud structure on the dark side of Venus. Nature 307, 222–224 (1984)

    Article  ADS  Google Scholar 

  • T.S. Barman, B. Macintosh, Q.M. Konopacky, C. Marois, Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. Astrophys. J. 733, 65 (2011)

    Article  ADS  Google Scholar 

  • R. Barnes, R. Luger, R. Deitrick, P. Driscoll, T.R. Quinn, D.P. Fleming, H. Smotherman, D.V. McDonald, C. Wilhelm, R. Garcia, P. Barth, B. Guyer, V.S. Meadows, C.M. Bitz, P. Gupta, S.D. Domagal-Goldman, J. Armstrong, Vplanet: the virtual planet simulator. Publ. Astron. Soc. Pac. 132, 024502 (2020). https://doi.org/10.1088/1538-3873/ab3ce8

    Article  ADS  Google Scholar 

  • D.A. Belyaev, D.G. Evdokimova, F. Montmessin, J.L. Bertaux, O.I. Korablev, A.A. Fedorova, E. Marcq, L. Soret, M.S. Luginin, Night side distribution of SO2 content in Venus’ upper mesosphere. Icarus 294, 58–71 (2017). https://doi.org/10.1016/j.icarus.2017.05.002

    Article  ADS  Google Scholar 

  • J.L. Bertaux, B. Gondet, F. Lefévre, J.P. Bibring, F. Montmessin, First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions. J. Geophys. Res. 117, E00J04 (2012). https://doi.org/10.1029/2011JE003890

    Article  ADS  Google Scholar 

  • C.J. Bierson, X. Zhang, Chemical cycling in the Venusian atmosphere: a full photochemical model from the surface to 110 km. J. Geophys. Res., Planets 125, e2019JE006159 (2020). https://doi.org/10.1029/2019JE006159

    Article  ADS  Google Scholar 

  • S.W. Bougher, W.J. Borucki, Venus O2 visible and IR nightglow: implications for lower thermospheric dynamics and chemistry. J. Geophys. Res. 99, 3759–3776 (1994)

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, Venus mesosphere and thermosphere, III. Three-dimensional general circulation with coupled dynamics and composition. Icarus 73, 545–573 (1988)

    Article  ADS  Google Scholar 

  • G.P. Brasseur, J.J. Orlando, G.S. Tyndall, Atmospheric Chemistry and Global Change (Oxford University Press, Oxford, 1999)

    Google Scholar 

  • M.A. Bullock, D.H. Grinspoon, The recent evolution of climate on Venus. Icarus 150, 19–37 (2001)

    Article  ADS  Google Scholar 

  • N. Butchart, The Brewer-Dobson circulation. Rev. Geophys. 52, 157–184 (2014)

    Article  ADS  Google Scholar 

  • D.C. Catling, J.F. Kasting, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  • J.W. Chamberlain, D.M. Hunten, Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry. International Geophysics Series, vol. 36 (Academic Press, New York, 1987)

    Google Scholar 

  • A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, E.C. Sittler, Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, L22103 (2007)

    Article  ADS  Google Scholar 

  • P. Connes, J. Connes, F. Noxon, W. Traub, N. Carlton, \(\text{O}_{2} (^{1} \Delta )\) emission in the day & night airglow of Venus. Astrophys. J. 233, L29–L32 (1979)

    Article  ADS  Google Scholar 

  • C.S. Cooper, A.P. Showman, Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006)

    Article  ADS  Google Scholar 

  • D. Crisp, V.S. Meadows, B. Bèzard, C. de Bergh, J.P. Maillard, F.P. Mills, Ground-based near-infrared observations of the Venus night side: near-infrared \(\text{O}_{2} (^{1} \Delta )\) airglow from the upper atmosphere. J. Geophys. Res. 101, 4577–4593 (1996)

    Article  ADS  Google Scholar 

  • I. de Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  • W.B. DeMore, Y.L. Yung, Catalytic processes in the atmospheres of Earth and Venus. Science 217, 1209–1213 (1982)

    Article  ADS  Google Scholar 

  • M. Dobrijevic, T. Cavalié, F. Billebaud, A methodology to construct a reduced chemical scheme for 2D-3D photochemical models: application to Saturn. Icarus 214, 275–285 (2011)

    Article  ADS  Google Scholar 

  • M. Dobrijevic, J.C. Loison, V. Hue, T. Cavalié, K.M. Hickson, 1D photochemical model of the ionosphere and the stratosphere of Neptune. Icarus 335, 113375 (2020)

    Article  Google Scholar 

  • L. Dorman, Cosmic Rays in the Earth’s Atmosphere and Underground (Kluwer Academic, Dordrecht, 2004)

    Book  Google Scholar 

  • L. Dorman, Cosmic Rays in Magnetospheres of the Earth and Other Planets (Springer, New York, 2009)

    Google Scholar 

  • B. Drummond, N.J. Mayne, J. Manners, I. Baraffe, J. Goyal, P. Tremblin, D.K. Sing, K. Kohary, The 3D thermal, dynamical, and chemical structure of the atmosphere of HD 189733b: implications of wind-driven chemistry for the emission phase curve. Astrophys. J. 869, 28 (2018a)

    Article  ADS  Google Scholar 

  • B. Drummond, N.J. Mayne, J. Manners, A.L. Carter, I.A. Boutle, I. Baraffe, E. Hébrard, P. Tremblin, D.K. Sing, D.S. Amundsen, D. Acreman, Observable signatures of wind-driven chemistry with a fully consistent three-dimensional radiative hydrodynamics model of HD 209458b. Astrophys. J. Lett. 855, L31 (2018b)

    Article  ADS  Google Scholar 

  • B. Drummond, E. Hébrard, N.J. Mayne, O. Venot, R.J. Ridgway, Q. Changeat, S.M. Tsai, J. Manners, P. Tremblin, N.L. Abraham, D. Sing, K. Kohary, Implications of three-dimensional chemical transport in hot Jupiter atmospheres: results from a consistently coupled chemistry-radiation-hydrodynamics model. Astron. Astrophys. 636, A68 (2020). https://doi.org/10.1051/0004-6361/201937153

    Article  Google Scholar 

  • T. Encrenaz, T.K. Greathouse, M.J. Richter, C. DeWitt, T. Widemann, B. Bèzard, T. Fouchet, S.K. Atreya, H. Sagawa, HDO and SO2 thermal mapping on Venus: III. Short-term and long-term variations between 2012 and 2016. Astron. Astrophys. 595, A74 (2016). https://doi.org/10.1051/0004-6361/201628999

    Article  ADS  Google Scholar 

  • T. Encrenaz, T.K. Greathouse, E. Marcq, H. Sagawa, T. Widemann, B. Bézard, T. Fouchet, F. Lefèvre, S. Lebonnois, S.K. Atreya, Y.J. Lee, R. Giles, S. Watanabe, HDO and SO2 thermal mapping on Venus: IV. Statistical analysis of the SO2 plumes. Astron. Astrophys. 623, A70 (2019). https://doi.org/10.1051/0004-6361/201833511

    Article  ADS  Google Scholar 

  • T. Encrenaz, T.K. Greathouse, E. Marcq, H. Sagawa, T. Widemann, B. Bézard, T. Fouchet, F. Lefèvre, S. Lebonnois, S.K. Atreya, Y.J. Lee, R. Giles, S. Watanabe, W. Shao, X. Zhang, C.J. Bierson, HDO and SO2 thermal mapping on Venus: V. Evidence for a long-term anti-correlation. Astron. Astrophys. 639, A69 (2020). https://doi.org/10.1051/0004-6361/202037741

    Article  Google Scholar 

  • M.B. Enghoff, H. Svensmark, The role of atmospheric ions in aerosol nucleation – a review. Atmos. Chem. Phys. 8, 4911–4923 (2008)

    Article  ADS  Google Scholar 

  • D. Evdokimova, D. Belyaev, F. Montmessin, J.L. Bertaux, O. Korablev, Improved calibrations of the stellar occultation data accumulated by the SPICAV UV onboard Venus Express. Planet. Space Sci. 184, 104868 (2020). https://doi.org/10.1016/j.pss.2020.104868

    Article  Google Scholar 

  • A.A. Fedorova, F. Lefèvre, S. Guslyakova, O. Korablev, J.L. Bertaux, F. Montmessin, A. Reberac, B. Gondet, The O2 nightglow in the Martian atmosphere by SPICAM onboard of Mars-Express. Icarus 219, 596–608 (2012). https://doi.org/10.1016/j.icarus.2012.03.031

    Article  ADS  Google Scholar 

  • B. Fegley Jr., M.K. Zolotov, K. Lodders, The oxidation state of the lower atmosphere and surface of Venus. Icarus 125, 416–439 (1997)

    Article  ADS  Google Scholar 

  • J.B. Fegley, K. Lodders, Atmospheric chemistry of the brown dwarf Gliese 229B: thermochemical equilibrium predictions. Astrophys. J. 472, L37–L39 (1996)

    Article  ADS  Google Scholar 

  • J.B. Fegley, R.G. Prinn, Equilibrium and nonequilibrium chemistry of Saturn’s atmosphere: implications for the observability of PH3, N2, CO, and GeH4. Astrophys. J. 299, 1067–1078 (1985)

    Article  ADS  Google Scholar 

  • B.J. Finlayson-Pitts, J. Pitts, Chemistry of the Upper and Lower Atmosphere (Academic Press, New York, 2000)

    Google Scholar 

  • E.L. Fleming, C. George, D.W. Heard, C.H. Jackman, M.J. Kurylo, W. Mellouki, V.L. Orkin, W.H. Swartz, T.J. Wallington, P.H. Wine, J.B. Burkholder, The impact of current CH4 and H2O atmospheric loss process uncertainties on calculated ozone abundances and trends. J. Geophys. Res., Atmos. 120, 5267–5293 (2015)

    Article  ADS  Google Scholar 

  • F. Forget, S. Lebonnois, Global climate models of the terrestrial planets, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 213–229

    Google Scholar 

  • J.C. Gérard, L. Soret, G. Piccioni, P. Drossart, Spatial correlation of OH Meinel and O2 infrared atmospheric nightglow emissions observed with VIRTIS-M on board Venus Express. Icarus 217, 813–817 (2012). https://doi.org/10.1016/j.icarus.2011.09.010

    Article  ADS  Google Scholar 

  • J.M. Grebowsky, J.I. Moses, W.D. Pesnell, Meteoric material – an important component of planetary atmospheres, in Atmospheres in the Solar System: Comparative Aeronomy, ed. by M. Mendillo, A. Nagy, J.H. Waite (American Geophysical Union, Washington, 2002), pp. 235–244

    Chapter  Google Scholar 

  • J.L. Grenfell, A review of exoplanetary biosignatures. Phys. Rep. 713, 1–17 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P. Hamill, O.B. Toon, C.S. Kiang, Microphysical processes affecting stratospheric aerosol particles. J. Atmos. Sci. 34, 1104–1119 (1977)

    Article  ADS  Google Scholar 

  • C. Helling, P.B. Rimmer, Lightning and charge processes in brown dwarf and exoplanet atmospheres. Philos. Trans. R. Soc. A 377, 20180398 (2019). https://doi.org/10.1098/rsta.2018.0398

    Article  ADS  Google Scholar 

  • V. Hue, T. Cavalié, M. Dobrijevic, F. Hersant, T.K. Greathouse, 2D photochemical modeling of Saturn’s stratosphere Part I: seasonal variation of atmospheric composition without meridional transport. Icarus 257, 163–184 (2015)

    Article  ADS  Google Scholar 

  • V. Hue, T.K. Greathouse, T. Cavalié, M. Dobrijevic, F. Hersant, 2D photochemical modeling of Saturn’s stratosphere Part II: feedback between composition and temperature. Icarus 267, 334–343 (2016)

    Article  ADS  Google Scholar 

  • R. Hueso, A. Sánchez-Lavega, Atmospheric dynamics and vertical structure of Uranus and Neptune’s weather layers. Space Sci. Rev. 215, 52 (2019)

    Article  ADS  Google Scholar 

  • P.G.J. Irwin, V. Parmentier, J. Taylor, J. Barstow, S. Aigrain, G.K.H. Lee, R. Garland, 2.5D retrieval of atmospheric properties from exoplanet phase curves: application to WASP-43b observations. Mon. Not. R. Astron. Soc. 493, 106–125 (2020)

    Article  ADS  Google Scholar 

  • D.J. Jacob, Introduction to Atmospheric Chemistry (Princeton University Press, Princeton, 1999)

    Google Scholar 

  • K.L. Jessup, E. Marcq, F. Mills, A. Mahieux, S. Limaye, C. Wilson, M. Allen, J.L. Berteaux, W. Markiewicz, T. Roman, A.C. Vandaele, V. Wilquet, Y. Yung, Coordinated Hubble Space Telescope and Venus Express observations of Venus’ upper cloud deck. Icarus 258, 309–336 (2015). https://doi.org/10.1016/j.icarus.2015.05.027

    Article  ADS  Google Scholar 

  • J.F. Kasting, S. Ono, Palaeoclimates: the first two billion years. Philos. Trans. R. Soc. B 361, 917–929 (2006)

    Article  Google Scholar 

  • J.A. Kaye, D.F. Strobel, Phosphine photochemistry in Saturn’s atmosphere. Geophys. Res. Lett. 10, 957–960 (1983)

    Article  ADS  Google Scholar 

  • J.A. Kaye, D.F. Strobel, Phosphine photochemistry in the atmosphere of Saturn. Icarus 59, 314–335 (1984)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230–246 (2012)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus. Icarus 225, 570–580 (2013)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Chemical-composition of the atmosphere of Venus. Nature 292, 610–613 (1981)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, J.B. Pollack, H2O–H2SO4 system in Venus’ clouds and OCS, CO, and H2SO4 profiles in Venus’ troposphere. Icarus 109, 58–78 (1994)

    Article  ADS  Google Scholar 

  • P.P. Lavvas, A. Coustenis, I.M. Vardavas, Coupling photochemistry with haze formation in Titan’s atmosphere, part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56, 67–99 (2008)

    Article  ADS  Google Scholar 

  • S. Lebonnois, D. Toublanc, F. Hourdin, P. Rannou, Seasonal variations of Titan’s atmospheric composition. Icarus 152, 384–406 (2001)

    Article  ADS  Google Scholar 

  • S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Superrotation of Venus’ atmosphere analysed with a full General Circulation Model. J. Geophys. Res. 115, E06006 (2010). https://doi.org/10.1029/2009JE003458

    Article  ADS  Google Scholar 

  • F. Lefèvre, S. Lebonnois, F. Montmessin, F. Forget, Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004 (2004)

    Article  ADS  Google Scholar 

  • K.N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observations, and Modeling (Oxford University Press, New York, 1992)

    Google Scholar 

  • N. Madhusudhan, M. Agundez, J.I. Moses, Y. Hu, Exoplanetary atmospheres – chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016)

    Article  ADS  Google Scholar 

  • A. Mahieux, A.C. Vandaele, S. Robert, V. Wilquet, R. Drummond, S. Chamberlain, D. Belyaev, J.L. Bertaux, Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express. Planet. Space Sci. 113–114, 193–204 (2015)

    Article  ADS  Google Scholar 

  • E. Marcq, B. Bèzard, P. Drossart, G. Piccioni, J.M. Reess, F. Henry, A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: spectroscopic studies using VIRTIS-H. J. Geophys. Res. 113, E00B07 (2008)

    Article  ADS  Google Scholar 

  • E. Marcq, F.P. Mills, C.D. Parkinson, A.C. Vandaele, Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018)

    Article  ADS  Google Scholar 

  • M.S. Marley, A.S. Ackerman, J.N. Cuzzi, D. Kitzmann, Clouds and hazes in exoplanet atmospheres, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 367–391

    Google Scholar 

  • M.B. McElroy, T.M. Donahue, Stability of the Martian atmosphere. Science 177, 986–988 (1972)

    Article  ADS  Google Scholar 

  • M.B. McElroy, R.J. Salawitch, S.C. Wofsy, J.A. Logan, Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321, 759 (1986)

    Article  ADS  Google Scholar 

  • V.S. Meadows, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17, 1022–1052 (2017)

    Article  ADS  Google Scholar 

  • J. Mendonça, S.M. Tsai, M. Malik, S.L. Grimm, K. Heng, Three-dimensional circulation driving chemical disequilibrium in WASP-43b. Astrophys. J. 869, 107 (2018)

    Article  ADS  Google Scholar 

  • L. Merlivat, G. Nief, Fractionnement isotopique lors des changements d’etat solide-vapeur et liquide-vapeur de l’eau a des temperatures inferieures a \(0~^{\circ}\text{C}\). Tellus 19, 1 (1967)

    Google Scholar 

  • F.P. Mills, A spectroscopic search for molecular oxygen in the Venus middle atmosphere. J. Geophys. Res. 104, 30757–30764 (1999)

    Article  ADS  Google Scholar 

  • F.P. Mills, M. Allen, A review of selected issues concerning the chemistry in Venus’ middle atmosphere. Planet. Space Sci. 55, 1729–1740 (2007)

    Article  ADS  Google Scholar 

  • M.J. Mills, O.B. Toon, G.E. Thomas, Mesospheric sulfate aerosol layer. J. Geophys. Res. 110, D24208 (2005). https://doi.org/10.1029/2005JD006242

    Article  ADS  Google Scholar 

  • F.P. Mills, L.W. Esposito, Y.L. Yung, Atmospheric composition, chemistry, and clouds, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens (American Geophysical Union, Washington, 2007), pp. 73–100

    Chapter  Google Scholar 

  • F.P. Mills, E. Marcq, Y.L. Yung, C.D. Parkinson, K.L. Jessup, A.C. Vandaele, Atmospheric chemistry on Venus: an overview of unresolved issues, in 50th Lunar and Planetary Science Conference, Houston, TX, USA (LPI Contrib. No. 2132) Abst. 2374 (2019)

    Google Scholar 

  • K. Minschwaner, R.L. Salawitch, M.B. McElroy, Absorption of solar-radiation by O2 – implication for O3 and lifetimes of N2O, CFCl3, and CF2Cl2. J. Geophys. Res. 98, 10543–10561 (1993)

    Article  ADS  Google Scholar 

  • J.I. Moses, T.K. Greathouse, Latitudinal and seasonal models of stratospheric photochemistry on Saturn: comparison with infrared data from IRTF/TEXES. J. Geophys. Res. 110, E09007 (2005). https://doi.org/10.1029/2005JE002450

    Article  ADS  Google Scholar 

  • J.I. Moses, T. Fouchet, B. Bézard, G.R. Gladstone, E. Lellouch, H. Feuchtgruber, Photochemistry and diffusion in Jupiter’s stratosphere: constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. 110, E08001 (2005). https://doi.org/10.1029/2005JE002411

    Article  ADS  Google Scholar 

  • J.I. Moses, C. Visscher, J.J. Fortney, A.P. Showman, N.K. Lewis, C.A. Griffith, S.J. Klippenstein, M. Shabram, A.J. Friedson, M.S. Marley, R.S. Freedman, Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011)

    Article  ADS  Google Scholar 

  • J.I. Moses, M.S. Marley, K. Zahnle, M.R. Line, T.S. Barman, C. Visscher, J.J. Fortney, N.K. Lewis, M.J. Wolff, On the composition of young, directly imaged giant planets. Astrophys. J. 829, 66 (2016)

    Article  ADS  Google Scholar 

  • J.I. Moses, L.N. Fletcher, T.K. Greathouse, G.S. Orton, V. Hue, Seasonal stratospheric photochemistry on Uranus and Neptune. Icarus 307, 124–145 (2018)

    Article  ADS  Google Scholar 

  • J.I. Moses, P. Tremblin, O. Venot, Y. Miguel, Chemical variation with altitude and longitude on exo-Neptunes: predictions for ARIEL phase-curve observations (2021, under review). ArXiv:2103.07023

  • R. Müller et al., Upper stratospheric processes, in Scientific Assessment of Ozone Depletion: 1998, WMO, Geneva, ed. by D.L. Albritton et al. (1999), pp. 6.1–6.44

    Google Scholar 

  • H. Nair, M. Allen, A.D. Anbar, Y.L. Yung, R.T. Clancy, A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994)

    Article  ADS  Google Scholar 

  • T.A. Nordheim, L.R. Dartnell, L. Desorgher, A.J. Coates, G.H. Jones, Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus 245, 80–86 (2015)

    Article  ADS  Google Scholar 

  • L. Oman, D.W. Waugh, S. Pawson, R.S. Stolarski, J.E. Nielsen, Understanding the changes of stratospheric water vapor in coupled chemistry-climate model simulations. J. Atmos. Sci. 65, 3278 (2008)

    Article  ADS  Google Scholar 

  • R.E. Orville, A high-speed time-resolved spectroscopic study of the lightning return stroke: part III, a time-dependent model. J. Atmos. Sci. 25, 852–856 (1968)

    Article  ADS  Google Scholar 

  • C. Parkinson, P. Gao, L. Esposito, Y. Yung, S. Bougher, M. Hirtzig, Photochemical control of the distribution of Venusian water. Planet. Space Sci. 113–114, 226–236 (2015)

    Article  ADS  Google Scholar 

  • H. Pernice, P. Garcia, H. Willner, J.S. Francisco, F.P. Mills, M. Allen, Y.L. Yung, Laboratory evidence for a key intermediate in the Venus atmosphere: peroxychloroformyl radical. Proc. Natl. Acad. Sci. USA 101, 14007–14010 (2004)

    Article  ADS  Google Scholar 

  • C. Price, J. Penner, M. Prather, \(\text{NO}_{x}\) from lightning 1. Global distribution based on lightning physics. J. Geophys. Res. 102, 5929–5941 (1997)

    Article  ADS  Google Scholar 

  • R.G. Prinn, S.S. Barshay, Carbon monoxide on Jupiter and implications for atmospheric convection. Science 198, 1031–1033 (1977)

    Article  ADS  Google Scholar 

  • W.J. Randel, E. Moyer, M. Park, E. Jensen, P. Bernath, K. Walker, C. Boone, Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements. J. Geophys. Res. 117, D06303 (2012)

    Article  ADS  Google Scholar 

  • A.R. Ravishankara, T.G. Shepherd, M.P. Chipperfield, P.H. Haynes, S.R. Kawa, T. Peter, R.A. Plumb, R.W. Portmann, W.J. Randel, D.W. Waugh, D.R. Worsnop et al., Lower stratospheric processes, in Scientific Assessment of Ozone Depletion: 1998, World Meteorological Organization, Geneva, Switzerland, Global Ozone Research and Monitoring Project – Report No. 44 (1999)

    Google Scholar 

  • D.W. Rusch, J.C. Gèrard, S. Solomon, P.J. Crutzen, G.C. Reid, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere – I Odd nitrogen. Planet. Space Sci. 29, 767–774 (1981)

    Article  ADS  Google Scholar 

  • S.P. Sander, R.F. Friedl, Y.L. Yung, Rate of formation of the ClO dimer in the polar stratosphere: implications for ozone loss. Science 245, 1095–1098 (1989)

    Article  ADS  Google Scholar 

  • B.J. Sandor, R.T. Clancy, G. Moriarty-Schieven, F.P. Mills, Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra. Icarus 208, 49–60 (2010)

    Article  ADS  Google Scholar 

  • D. Saumon, M.S. Marley, M.C. Cushing, S.K. Leggett, T.L. Roellig, K. Lodders, R.S. Freedman, Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D. Astrophys. J. 647, 552–557 (2006)

    Article  ADS  Google Scholar 

  • W.D. Shao, X. Jiang, C.J. Bierson, T. Encrenaz, Revisiting the sulfur-water chemical system in the middle atmosphere of Venus. J. Geophys. Res., Planets 125, e2019JE006195 (2020). https://doi.org/10.1029/2019JE006195

    Article  ADS  Google Scholar 

  • S. Solomon, D.W. Rusch, J.C. Gèrard, G.C. Reid, P.J. Crutzen, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci. 29, 885–892 (1981)

    Article  ADS  Google Scholar 

  • S. Solomon, R.W. Portmann, R.R. Garcia, W. Randel, F. Wu, R. Nagatani, J. Gleason, L. Thomason, L.R. Poole, M.P. McCormick, Ozone depletion at mid-latitudes: coupling of volcanic aerosols and temperature variability to anthropogenic chlorine. Geophys. Res. Lett. 25, 1871–1874 (1998)

    Article  ADS  Google Scholar 

  • L. Soret, J.C. Gérard, G. Piccioni, P. Drossart, Time variations of \(\text{O}_{2}(a^{1}\Delta )\) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 237, 306–314 (2014). https://doi.org/10.1016/j.icarus.2014.03.034

    Article  ADS  Google Scholar 

  • R.S. Stolarski, D.M. Butler, R.D. Rundel, Uncertainty propagation in a stratospheric model 2. Monte Carlo analysis of imprecisions due to reaction rates. J. Geophys. Res. 83, 3074–3078 (1978)

    Article  ADS  Google Scholar 

  • D.F. Strobel, The photochemistry of hydrocarbons in the Jovian atmosphere. J. Atmos. Sci. 30, 489–498 (1973)

    Article  ADS  Google Scholar 

  • J. Taylor, V. Parmentier, P.G.J. Irwin, S. Aigrain, G.K.H. Lee, J. Krissansen-Totton, Understanding and mitigating biases when studying inhomogeneous emission spectra with JWST. Mon. Not. R. Astron. Soc. 493(3), 4342–4354 (2020). https://doi.org/10.1093/mnras/staa552

    Article  ADS  Google Scholar 

  • N.A. Teanby, P.G.J. Irwin, J.I. Moses, Neptune’s carbon monoxide profile and phosphine upper limits from Herschel/SPIRE: implications for interior structure and formation. Icarus 319, 86–98 (2019). Corrigendum: Icarus 322, 261

    Article  ADS  Google Scholar 

  • S.M. Tsai, J.R. Lyons, L. Grosheintz, P.B. Rimmer, D. Kitzmann, K. Heng, VULCAN: an open-source, validated chemical kinetics python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017)

    Article  ADS  Google Scholar 

  • S.M. Tsai, D. Kitzmann, J.R. Lyons, J. Mendonça, S.L. Grimm, K. Heng, Toward consistent modeling of atmospheric chemistry and dynamics in exoplanets: validation and generalization of the chemical relaxation method. Astrophys. J. 862, 31 (2018)

    Article  ADS  Google Scholar 

  • S. Twomey, Atmospheric Aerosols (Elsevier, Amsterdam, 1977)

    Google Scholar 

  • O. Venot, E. Hébrard, M. Agundez, M. Dobrijevic, F. Selsis, F. Hersant, N. Iro, R. Bounaceur, A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 546, A43 (2012)

    Article  ADS  Google Scholar 

  • O. Venot, V. Parmentier, J. Blecic, P.E. Cubillos, I.P. Waldmann, Q. Changeat, J.I. Moses, P. Tremblin, N. Crouzet, P. Gao, D. Powell, P.O. Lagage, I. Dobbs-Dixon, M.E. Steinrueck, L. Kreidberg, N. Batalha, J.L. Bean, K.B. Stevenson, S. Casewell, L. Carone, Global chemistry and thermal structure models for the hot Jupiter WASP-43b and predictions for JWST. Astrophys. J. 890, 176 (2020). https://doi.org/10.3847/1538-4357/ab6a94

    Article  ADS  Google Scholar 

  • V. Vuitton, R.V. Yelle, V.G. Anicich, The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys. J. Lett. 647, L175–L178 (2006)

    Article  ADS  Google Scholar 

  • J.H. Waite Jr., D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007)

    Article  ADS  Google Scholar 

  • M.J. Way, I. Aleinov, D.S. Amundsen, M.A. Chandler, T.L. Clune, A.D.D. Genio, Y. Fujii, M. Kelley, N.Y. Kiang, L. Sohl, K. Tsigaridis, Resolving orbital and climate keys of Earth and extraterrestrial environments with dynamics (ROCKE-3D) 1.0: a general circulation model for simulating the climates of rocky planets. Astrophys. J. Suppl. Ser. 231, 12 (2017). https://doi.org/10.3847/1538-4365/aa7a06

    Article  ADS  Google Scholar 

  • WMO, Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Monitoring Project – Report No. 44, (World Meteorological Organization), Geneva, Switzerland, Frequently Asked Questions about Ozone (1999)

  • P. Woitke, C. Helling, O. Gunn, Dust in brown dwarfs and extra-solar planets VII. Cloud formation in diffusive atmospheres. Astron. Astrophys. 634, A23 (2020)

    Article  ADS  Google Scholar 

  • R.D. Wordsworth, R. Pierrehumbert, Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20 (2014)

    Article  ADS  Google Scholar 

  • R.D. Wordsworth, L.K. Schaefer, R.A. Fischer, Redox evolution via gravitational differentiation on low-mass planets: implications for abiotic oxygen, water loss, and habitability. Astron. J. 155, 5 (2018)

    Article  Google Scholar 

  • M. Yamamoto, M. Takahashi, Prograde and retrograde atmospheric rotation of cloud-covered terrestrial planets: significance of astronomical parameters in the middle atmosphere. Astron. Astrophys. 490, L11–L14 (2008). https://doi.org/10.1051/0004-6361:200810530

    Article  ADS  Google Scholar 

  • Y. Yung, W. DeMore, Photochemistry of the stratosphere of Venus: implications for atmospheric evolution. Icarus 51, 199–247 (1982)

    Article  ADS  Google Scholar 

  • Y. Yung, W. DeMore, Photochemistry of Planetary Atmospheres (Oxford University Press, New York, 1999)

    Book  Google Scholar 

  • Y.L. Yung, M. Allen, J.P. Pinto, Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984)

    Article  ADS  Google Scholar 

  • Y.L. Yung, M.C. Liang, X. Jiang, R.L. Shia, C. Lee, B. Bèzard, E. Marcq, Evidence for carbonyl sulfide OCS conversion to CO in the lower atmosphere of Venus. J. Geophys. Res. 114, E00B34 (2009)

    Article  ADS  Google Scholar 

  • X. Zhang, M.C. Liang, F.P. Mills, D.A. Belyaev, Y.L. Yung, Sulfur chemistry in the middle atmosphere of Venus. Icarus 217, 714–739 (2012)

    Article  ADS  Google Scholar 

  • X. Zhang, R.L. Shia, Y.L. Yung, Jovian stratosphere as a chemical transport system: benchmark analytical solutions. Astrophys. J. 767, 172 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the International Space Science Institute (ISSI) and EuroPlanet for their support. This research grew out of the ISSI/Europlanet Workshop, Understanding the Diversity of Planetary Atmospheres. JM acknowledges support from National Aeronautics and Space Administration (NASA) grant 80NSSC20K0462 to Space Science Institute (SSI). S-M. Tsai acknowledges support from the European community through the European Research Council (ERC) advanced grant EXOCONDENSE (PI: R.T. Pierrehumbert) This is University of Texas at Austin Center for Planetary Systems Habitability Contribution #0020.

Funding

International Space Science Institute, EuroPlanet, NASA, and ERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin P. Mills.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Understanding the Diversity of Planetary Atmospheres

Edited by François Forget, Oleg Korablev, Julia Venturini, Takeshi Imamura, Helmut Lammer and Michel Blanc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, F.P., Moses, J.I., Gao, P. et al. The Diversity of Planetary Atmospheric Chemistry. Space Sci Rev 217, 43 (2021). https://doi.org/10.1007/s11214-021-00810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-021-00810-1

Keywords

Navigation