Skip to main content
Log in

Composition and Chemistry of the Neutral Atmosphere of Venus

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper deals with the composition and chemical processes occurring in the neutral atmosphere of Venus. Since the last synthesis, observers as well as modellers have emphasised the spatial and temporal variability of minor species, going beyond a static and uniform picture that may have prevailed in the past. The outline of this paper acknowledges this situation and follows closely the different dimensions along which variability in composition can be observed: vertical, latitudinal, longitudinal, temporal. The strong differences between the atmosphere below and above the cloud layers also dictate the structure of this paper. Observational constraints, obtained from both Earth and Venus Express, as well as 1D, 2D and 3D models results obtained since 1997 are also extensively referred and commented by the authors. An non-exhaustive list of topics included follows: modelled and observed latitudinal and vertical profiles of CO and OCS below the clouds of Venus; vertical profiles of CO and SO2 above the clouds as observed by solar occultation and modelled; temporal and spatial variability of sulphur oxides above the clouds. As a conclusion, open questions and topics of interest for further studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Often named Hadley-cell circulation by analogy with Earth’s general circulation in the tropics.

References

  • D.A. Allen, J.W. Crawford, Cloud structure on the dark side of Venus. Nature 307, 222–224 (1984). doi:10.1038/307222a0

    Article  ADS  Google Scholar 

  • G. Arney, V. Meadows, D. Crisp, S.J. Schmidt, J. Bailey, T. Robinson, Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res., Planets 119, 1860–1891 (2014). doi:10.1002/2014JE004662

    Article  ADS  Google Scholar 

  • J. Bailey, A comparison of water vapor line parameters for modeling the Venus deep atmosphere. Icarus 201, 444–453 (2009). doi:10.1016/j.icarus.2009.01.013

    Article  ADS  Google Scholar 

  • R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, A high-accuracy computed water line list. Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006). doi:10.1111/j.1365-2966.2006.10184.x

    Article  ADS  Google Scholar 

  • E.S. Barker, Detection of SO2 in the UV spectrum of Venus. Geophys. Res. Lett. 6, 117–120 (1979). doi:10.1029/GL006i002p00117

    Article  ADS  Google Scholar 

  • J.K. Barstow, C.C.C. Tsang, C.F. Wilson, P.G.J. Irwin, F.W. Taylor, K. McGouldrick, P. Drossart, G. Piccioni, S. Tellmann, Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217, 542–560 (2012). doi:10.1016/j.icarus.2011.05.018

    Article  ADS  Google Scholar 

  • E.J. Barton, C. Hill, S.N. Yurchenko, J. Tennyson, A.S. Dudaryonok, N.N. Lavrentieva, Pressure-dependent water absorption cross sections for exoplanets and other atmospheres. J. Quant. Spectrosc. Radiat. Transf. 187, 453–460 (2017). doi:10.1016/j.jqsrt.2016.10.024

    Article  ADS  Google Scholar 

  • D. Belyaev, O. Korablev, A. Fedorova, J.-L. Bertaux, A.-C. Vandaele, F. Montmessin, A. Mahieux, V. Wilquet, R. Drummond, First observations of SO2 above Venus’ clouds by means of solar occultation in the infrared. J. Geophys. Res., Planets 113, E00B25 (2008). doi:10.1029/2008JE003143

    Article  Google Scholar 

  • D.A. Belyaev, F. Montmessin, J.-L. Bertaux, A. Mahieux, A. Fedorova, O.I. Korablev, E. Marcq, Y.L. Yung, X. Zhang, Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217, 740–751 (2012). doi:10.1016/j.icarus.2011.09.025

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, T. Widemann, A. Hauchecorne, V.I. Moroz, A.P. Ekonomov, VEGA 1 and VEGA 2 entry probes: an investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure). J. Geophys. Res. 101, 12709–12746 (1996). doi:10.1029/96JE00466

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, A.-C. Vandaele, O. Korablev, E. Villard, A. Fedorova, D. Fussen, E. Quémerais, D. Belyaev, A. Mahieux, F. Montmessin, C. Muller, E. Neefs, D. Nevejans, V. Wilquet, J.P. Dubois, A. Hauchecorne, A. Stepanov, I. Vinogradov, A. Rodin, J.-L. Bertaux, D. Nevejans, O. Korablev, F. Montmessin, A.-C. Vandaele, A. Fedorova, M. Cabane, E. Chassefière, J.Y. Chaufray, E. Dimarellis, J.P. Dubois, A. Hauchecorne, F. Leblanc, F. Lefèvre, P. Rannou, E. Quémerais, E. Villard, D. Fussen, C. Muller, E. Neefs, E. van Ransbeeck, V. Wilquet, A. Rodin, A. Stepanov, I. Vinogradov, L. Zasova, F. Forget, S. Lebonnois, D. Titov, S. Rafkin, G. Durry, J.C. Gérard, B. Sandel, A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649 (2007a). doi:10.1038/nature05974

    Article  ADS  Google Scholar 

  • J.-L. Bertaux, D. Nevejans, O. Korablev, E. Villard, E. Quémerais, E. Neefs, F. Montmessin, F. Leblanc, J.P. Dubois, E. Dimarellis, A. Hauchecorne, F. Lefèvre, P. Rannou, J.Y. Chaufray, M. Cabane, G. Cernogora, G. Souchon, F. Semelin, A. Reberac, E. Van Ransbeek, S. Berkenbosch, R. Clairquin, C. Muller, F. Forget, F. Hourdin, O. Talagrand, A. Rodin, A. Fedorova, A. Stepanov, I. Vinogradov, A. Kiselev, Y. Kalinnikov, G. Durry, B. Sandel, A. Stern, J.C. Gérard, SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007b). doi:10.1016/j.pss.2007.01.016

    Article  ADS  Google Scholar 

  • B. Bézard, C. de Bergh, Composition of the atmosphere of Venus below the clouds. J. Geophys. Res., Planets 112, 4 (2007). doi:10.1029/2006JE002794

    Article  Google Scholar 

  • B. Bézard, C. de Bergh, D. Crisp, J.-P. Maillard, The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508–511 (1990). doi:10.1038/345508a0

    Article  ADS  Google Scholar 

  • B. Bézard, C.C.C. Tsang, R.W. Carlson, G. Piccioni, E. Marcq, P. Drossart, Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J. Geophys. Res., Planets 114, E00B39 (2009). doi:10.1029/2008JE003251

    Article  Google Scholar 

  • B. Bézard, A. Fedorova, J.-L. Bertaux, A. Rodin, O. Korablev, The 1.10- and \(1.18\mbox{-}\upmu\mbox{m}\) nightside windows of Venus observed by SPICAV-IR aboard Venus Express. Icarus 216, 173–183 (2011). doi:10.1016/j.icarus.2011.08.025

    Article  ADS  Google Scholar 

  • G.L. Bjoraker, H.P. Larson, M.J. Mumma, R. Timmermann, J.L. Montani, Airborne observations of the gas composition of Venus above the cloud tops: measurements of H2O, HDO, HF, and the \(\mathrm{D}/\mathrm{H}\) and \(^{18}\mathrm{O}/^{16}\mathrm{O}\) isotopic ratios, in AAS/Division for Planetary Sciences Meeting Abstracts #24. Bulletin of the American Astronomical Society, vol. 24, 1992, p. 995

    Google Scholar 

  • D. Blackie, R. Blackwell-Whitehead, G. Stark, J.C. Pickering, P.L. Smith, J. Rufus, A.P. Thorne, High-resolution photoabsorption cross-section measurements of SO2 at 198 K from 213 to 325 nm. J. Geophys. Res., Planets 116, 3006 (2011). doi:10.1029/2010JE003707

    Article  ADS  Google Scholar 

  • K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O.C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, J.P. Burrows, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A, Chem. 157, 167–184 (2003)

    Article  Google Scholar 

  • S.W. Bougher, J.C. Gerard, A.I.F. Stewart, C.G. Fessen, The Venus nitric oxide night airglow—model calculations based on the Venus Thermospheric General Circulation Model. J. Geophys. Res. 95, 6271–6284 (1990). doi:10.1029/JA095iA05p06271

    Article  ADS  Google Scholar 

  • S.W. Bougher, A.S. Brecht, R. Schulte, J. Fischer, C.D. Parkinson, A. Mahieux, V. Wilquet, A. Vandaele, Upper atmosphere temperature structure at the Venusian terminators: a comparison of SOIR and VTGCM results. Planet. Space Sci. 113, 336–346 (2015). doi:10.1016/j.pss.2015.01.012

    Article  ADS  Google Scholar 

  • A.S. Brecht, S.W. Bougher, J.-C. Gérard, C.D. Parkinson, S. Rafkin, B. Foster, Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res., Planets 116, 8004 (2011). doi:10.1029/2010JE003770

    Article  ADS  Google Scholar 

  • J.B. Burkholder, S.P. Sander, J. Abbatt, J.R. Barker, R.E. Huie, C.E. Kolb, M.J. Kurylo, V.L. Orkin, D.M. Wilmouth, P.H. Wine, Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 18, JPL Publication 15-10, Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, 2015

  • R.W. Carlson, L.W. Kamp, K.H. Baines, J.B. Pollack, D.H. Grinspoon, T. Encrenaz, P. Drossart, F.W. Taylor, Variations in Venus cloud particle properties: a new view of Venus’s cloud morphology as observed by Galileo Near-Infrared Mapping Spectrometer. Planet. Space Sci. 41, 477–485 (1993). doi:10.1016/0032-0633(93)90030-6

    ADS  Google Scholar 

  • S. Chamberlain, J. Bailey, D. Crisp, V. Meadows, Ground-based near-infrared observations of water vapour in the Venus troposphere. Icarus 222, 364–378 (2013). doi:10.1016/j.icarus.2012.11.014

    Article  ADS  Google Scholar 

  • S. Chamberlain, V. Wilquet, A. Mahieux, S. Robert, I. Thomas, A.C. Vandaele, J.-L. Bertaux, Venus water vapour profiles obtained by SOIR/VEx. Geophys. Res. Abs. 17 (2015)

  • E. Chassefière, R. Wieler, B. Marty, F. Leblanc, The evolution of Venus: present state of knowledge and future exploration. Planet. Space Sci. 63, 15–23 (2012). doi:10.1016/j.pss.2011.04.007

    Article  ADS  Google Scholar 

  • B.-M. Cheng, E.P. Chew, C.-P. Liu, M. Bahou, Y.-P. Lee, Y.L. Yung, M.F. Gerstell, Photo-induced fractionation of water isotopomers in the Martian atmosphere. Geophys. Res. Lett. 26, 3657–3660 (1999). doi:10.1029/1999GL008367

    Article  ADS  Google Scholar 

  • R.T. Clancy, D.O. Muhleman, Diurnal CO variations in the Venus mesosphere from CO microwave spectra. Icarus 64, 157–182 (1985). doi:10.1016/0019-1035(85)90084-3

    Article  ADS  Google Scholar 

  • R.T. Clancy, D.O. Muhleman, Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus mesosphere as inferred from microwave spectral line observations of 12CO, 13CO, and C18O. Icarus 89, 129–146 (1991). doi:10.1016/0019-1035(91)90093-9

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, G.H. Moriarty-Schieven, Venus upper atmospheric CO, temperature, and winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line observations. Planet. Space Sci. 56, 1344–1354 (2008). doi:10.1016/j.pss.2008.05.007

    Article  ADS  Google Scholar 

  • R.T. Clancy, B.J. Sandor, G. Moriarty-Schieven, Thermal structure and CO distribution for the Venus mesosphere/lower thermosphere: 2001–2009 inferior conjunction sub-millimeter CO absorption line observations. Icarus 217, 779–793 (2012). doi:10.1016/j.icarus.2011.05.032

    Article  ADS  Google Scholar 

  • A.D. Collard, F.W. Taylor, S.B. Calcutt, R.W. Carlson, L.W. Kamp, K.H. Baines, T. Encrenaz, P. Drossart, E. Lellouch, B. Bézard, Latitudinal distribution of carbon monoxide in the deep atmosphere of Venus. Planet. Space Sci. 41, 487–494 (1993). doi:10.1016/0032-0633(93)90033-X

    Article  ADS  Google Scholar 

  • P. Connes, J. Connes, W.S. Benedict, L.D. Kaplan, Traces of HCl and HF in the atmosphere of Venus. Astrophys. J. 147, 1230–1237 (1967). doi:10.1086/149124

    Article  ADS  Google Scholar 

  • P. Connes, J. Connes, L.D. Kaplan, W.S. Benedict, Carbon monoxide in the Venus atmosphere. Astrophys. J. 152, 731–743 (1968). doi:10.1086/149590

    Article  ADS  Google Scholar 

  • P. Connes, J.F. Noxon, W.A. Traub, N.P. Carleton, O2 \(^{1} \Delta\) emission in the day and night airglow of Venus. Astrophys. J. Lett. 233, 29–32 (1979). doi:10.1086/183070

    Article  ADS  Google Scholar 

  • R.R. Conway, R.P. McCoy, C.A. Barth, A.L. Lane, IUE detection of sulfur dioxide in the atmosphere of Venus. Geophys. Res. Lett. 6, 629–631 (1979). doi:10.1029/GL006i007p00629

    Article  ADS  Google Scholar 

  • A. Coradini, F. Capaccioni, P. Drossart, A. Semery, G. Arnold, U. Schade, F. Angrilli, M.A. Barucci, G. Bellucci, G. Bianchini, J.P. Bibring, A. Blanco, M. Blecka, D. Bockelee-Morvan, R. Bonsignori, M. Bouye, E. Bussoletti, M.T. Capria, R. Carlson, U. Carsenty, P. Cerroni, L. Colangeli, M. Combes, M. Combi, J. Crovisier, M. Dami, M.C. DeSanctis, A.M. DiLellis, E. Dotto, T. Encrenaz, E. Epifani, S. Erard, S. Espinasse, A. Fave, C. Federico, U. Fink, S. Fonti, V. Formisano, Y. Hello, H. Hirsch, G. Huntzinger, R. Knoll, D. Kouach, W.H. Ip, P. Irwin, J. Kachlicki, Y. Langevin, G. Magni, T. McCord, V. Mennella, H. Michaelis, G. Mondello, S. Mottola, G. Neukum, V. Orofino, R. Orosei, P. Palumbo, G. Peter, B. Pforte, G. Piccioni, J.M. Reess, E. Ress, B. Saggin, B. Schmitt, D. Stefanovitch, A. Stern, F. Taylor, D. Tiphene, G. Tozzi, VIRTIS: an imaging spectrometer for the ROSETTA mission. Planet. Space Sci. 46, 1291–1304 (1998)

    Article  ADS  Google Scholar 

  • V. Cottini, N.I. Ignatiev, G. Piccioni, P. Drossart, D. Grassi, W.J. Markiewicz, Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217, 561–569 (2012). doi:10.1016/j.icarus.2011.06.018

    Article  ADS  Google Scholar 

  • V. Cottini, N.I. Ignatiev, G. Piccioni, P. Drossart, Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006–2011. Planet. Space Sci. (2015)

  • D.V. Cotton, J. Bailey, D. Crisp, V.S. Meadows, The distribution of carbon monoxide in the lower atmosphere of Venus. Icarus 217, 570–584 (2012). doi:10.1016/j.icarus.2011.05.020

    Article  ADS  Google Scholar 

  • C. de Bergh, B. Bézard, T. Owen, D. Crisp, J.-P. Maillard, B.L. Lutz, Deuterium on Venus—observations from Earth. Science 251, 547–549 (1991). doi:10.1126/science.251.4993.547

    Article  ADS  Google Scholar 

  • C. de Bergh, B. Bézard, D. Crisp, J.P. Maillard, T. Owen, J. Pollack, D. Grinspoon, Water in the deep atmosphere of Venus from high-resolution spectra of the night side. Adv. Space Res. 15, 79 (1995). doi:10.1016/0273-1177(94)00067-B

    Article  ADS  Google Scholar 

  • C. de Bergh, V.I. Moroz, F.W. Taylor, D. Crisp, B. Bézard, L.V. Zasova, The composition of the atmosphere of Venus below 100 km altitude: an overview. Planet. Space Sci. 54, 1389–1397 (2006). doi:10.1016/j.pss.2006.04.020

    Article  ADS  Google Scholar 

  • M.L. Delitsky, K.H. Baines, Storms on Venus: lightning-induced chemistry and predicted products. Planet. Space Sci. (2015). doi:10.1016/j.pss.2014.12.005

    Google Scholar 

  • T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999). doi:10.1006/icar.1999.6186

    Article  ADS  Google Scholar 

  • T.M. Donahue, C.T. Russell, The Venus atmosphere and ionosphere and their interaction with the solar wind: an overview, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 3

    Google Scholar 

  • P. Drossart, G. Piccioni, A. Adriani, F. Angrilli, G. Arnold, K.H. Baines, G. Bellucci, J. Benkhoff, B. Bézard, J.-P. Bibring, A. Blanco, M.I. Blecka, R.W. Carlson, A. Coradini, A. Di Lellis, T. Encrenaz, S. Erard, S. Fonti, V. Formisano, T. Fouchet, R. Garcia, R. Haus, J. Helbert, N.I. Ignatiev, P.G.J. Irwin, Y. Langevin, S. Lebonnois, M.A. Lopez-Valverde, D. Luz, L. Marinangeli, V. Orofino, A.V. Rodin, M.C. Roos-Serote, B. Saggin, A. Sanchez-Lavega, D.M. Stam, F.W. Taylor, D. Titov, G. Visconti, M. Zambelli, R. Hueso, C.C.C. Tsang, C.F. Wilson, T.Z. Afanasenko, Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planet. Space Sci. 55, 1653–1672 (2007). doi:10.1016/j.pss.2007.01.003

    Article  ADS  Google Scholar 

  • S. Du, J.S. Francisco, B.C. Shepler, K.A. Peterson, Determination of the rate constant for sulfur recombination by quasiclassical trajectory calculations. J. Chem. Phys. 128(20), 204306 (2008). doi:10.1063/1.2919569

    Article  ADS  Google Scholar 

  • T. Encrenaz, T.K. Greathouse, H. Roe, M. Richter, J. Lacy, B. Bézard, T. Fouchet, T. Widemann, HDO and SO2 thermal mapping on Venus: evidence for strong SO2 variability. Astron. Astrophys. 543, 153 (2012). doi:10.1051/0004-6361/201219419

    Article  ADS  Google Scholar 

  • T. Encrenaz, T.K. Greathouse, M.J. Richter, J. Lacy, T. Widemann, B. Bézard, T. Fouchet, C. deWitt, S.K. Atreya, HDO and SO2 thermal mapping on Venus. II. The SO2 spatial distribution above and within the clouds. Astron. Astrophys. 559, 65 (2013). doi:10.1051/0004-6361/201322264

    Article  ADS  Google Scholar 

  • T. Encrenaz, R. Moreno, A. Moullet, E. Lellouch, T. Fouchet, Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planet. Space Sci. 113, 275–291 (2015). doi:10.1016/j.pss.2015.01.011

    Article  ADS  Google Scholar 

  • T. Encrenaz, T.K. Greathouse, M.J. Richter, C. DeWitt, T. Widemann, B. Bézard, T. Fouchet, S.K. Atreya, H. Sagawa, HDO and SO2 thermal mapping on Venus. III. Short-term and long-term variations between 2012 and 2016. Astron. Astrophys. 595, 74 (2016). doi:10.1051/0004-6361/201628999

    Article  ADS  Google Scholar 

  • L.W. Esposito, R.G. Knollenberg, M.I. Marov, O.B. Toon, R.P. Turco, The clouds are hazes of Venus, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 484–564

    Google Scholar 

  • L.W. Esposito, M. Copley, R. Eckert, L. Gates, A.I.F. Stewart, H. Worden, Sulfur dioxide at the Venus cloud tops, 1978–1986. J. Geophys. Res. 93, 5267–5276 (1988). doi:10.1029/JD093iD05p05267

    Article  ADS  Google Scholar 

  • L.W. Esposito, J.-L. Bertaux, V. Krasnopolsky, V.I. Moroz, L.V. Zasova, Chemistry of lower atmosphere and clouds, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 415

    Google Scholar 

  • A. Fedorova, O. Korablev, A.C. Vandaele, J.-L. Bertaux, D. Belyaev, A. Mahieux, E. Neefs, V. Wilquet, R. Drummond, F. Montmessin, E. Villard, HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer on board Venus Express. J. Geophys. Res., Planets 113, E00B22 (2008). doi:10.1029/2008JE003146

    Article  Google Scholar 

  • A. Fedorova, B. Bézard, J.-L. Bertaux, O. Korablev, C. Wilson, The CO2 continuum absorption in the 1.10- and \(1.18\mbox{-}\upmu\mbox{m}\) windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus Express. Planet. Space Sci. 113, 66–77 (2015). doi:10.1016/j.pss.2014.08.010

    Article  ADS  Google Scholar 

  • A. Fedorova, E. Marcq, M. Luginin, O. Korablev, J.-L. Bertaux, F. Montmessin, Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/VEx observations. Icarus 275, 143–162 (2016). doi:10.1016/j.icarus.2016.04.010

    Article  ADS  Google Scholar 

  • B. Fegley Jr., A.H. Treiman, Chemistry of the surface and lower atmosphere of Venus. Sol. Syst. Res. 26, 97 (1992)

    ADS  Google Scholar 

  • B. Fegley Jr., G. Klingelhöfer, K. Lodders, T. Widemann, Geochemistry of surface-atmosphere interactions on Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 591

    Google Scholar 

  • V. Formisano, F. Angrilli, G. Arnold, S. Atreya, K.H. Baines, G. Bellucci, B. Bézard, F. Billebaud, D. Biondi, M.I. Blecka, L. Colangeli, L. Comolli, D. Crisp, M. D’Amore, T. Encrenaz, A. Ekonomov, F. Esposito, C. Fiorenza, S. Fonti, M. Giuranna, D. Grassi, B. Grieger, A. Grigoriev, J. Helbert, H. Hirsch, N. Ignatiev, A. Jurewicz, I. Khatuntsev, S. Lebonnois, E. Lellouch, A. Mattana, A. Maturilli, E. Mencarelli, M. Michalska, J. Lopez Moreno, B. Moshkin, F. Nespoli, Y. Nikolsky, F. Nuccilli, P. Orleanski, E. Palomba, G. Piccioni, M. Rataj, G. Rinaldi, M. Rossi, B. Saggin, D. Stam, D. Titov, G. Visconti, L. Zasova, The Planetary Fourier Spectrometer (PFS) onboard the European Venus Express mission. Planet. Space Sci. 54, 1298–1314 (2006). doi:10.1016/j.pss.2006.04.033

    Article  ADS  Google Scholar 

  • J.-C. Gérard, S.W. Bougher, M.A. López-Valverde, M. Pätzold, P. Drossart, G. Piccioni, Space Sci. Rev. 212, 1617–1683 (2017)

    Article  ADS  Google Scholar 

  • G. Gilli, Carbon monoxide and temperature in the upper atmosphere of Venus through the analysis of limb observations by VIRTIS/Venus Express, PhD thesis, Instituto de Astrofísica de Andalucía, 2012

  • G. Gilli, M.A. López-Valverde, J. Peralta, S. Bougher, A. Brecht, P. Drossart, G. Piccioni, Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus 248, 478–498 (2015). doi:10.1016/j.icarus.2014.10.047

    Article  ADS  Google Scholar 

  • C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009). doi:10.1016/j.epsl.2009.07.016

    Article  ADS  Google Scholar 

  • D. Grassi, R. Politi, N.I. Ignatiev, C. Plainaki, S. Lebonnois, P. Wolkenberg, L. Montabone, A. Migliorini, G. Piccioni, P. Drossart, The Venus nighttime atmosphere as observed by the VIRTIS-M instrument. Average fields from the complete infrared data set. J. Geophys. Res., Planets 119, 837–849 (2014). doi:10.1002/2013JE004586

    Article  ADS  Google Scholar 

  • D.H. Grinspoon, Implications of the high \(\mathrm{D}/\mathrm{H}\) ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993). doi:10.1038/363428a0

    Article  ADS  Google Scholar 

  • D. Grinspoon, The surface and atmosphere of Venus: evolution and present state, in Towards Understanding the Climate of Venus (Springer, Berlin, 2013), pp. 17–22

    Chapter  Google Scholar 

  • D.A. Gurnett, P. Zarka, R. Manning, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp, M.L. Kaiser, W.M. Farrell, Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature 409, 313–315 (2001)

    Article  ADS  Google Scholar 

  • M.A. Gurwell, D.O. Muhleman, K.P. Shah, G.L. Berge, D.J. Rudy, A.W. Grossman, Observations of the CO bulge on Venus and implications for mesospheric winds. Icarus 115, 141–158 (1995). doi:10.1006/icar.1995.1085

    Article  ADS  Google Scholar 

  • M.A. Gurwell, G.J. Melnick, V. Tolls, E.A. Bergin, B.M. Patten, SWAS observations of water vapor in the Venus mesosphere. Icarus 188, 288–304 (2007). doi:10.1016/j.icarus.2006.12.004

    Article  ADS  Google Scholar 

  • G.L. Hashimoto, Y. Abe, Climate control on Venus: comparison of the carbonate and pyrite models. Planet. Space Sci. 53, 839–848 (2005). doi:10.1016/j.pss.2005.01.005

    Article  ADS  Google Scholar 

  • G.L. Hashimoto, Y. Abe, S. Sasaki, CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability. Geophys. Res. Lett. 24, 289–292 (1997). doi:10.1029/96GL04006

    Article  ADS  Google Scholar 

  • R. Haus, D. Kappel, G. Arnold, Lower atmosphere minor gas abundances as retrieved from Venus Express VIRTIS-M-IR data at \(2.3~\upmu\mbox{m}\). Planet. Space Sci. 105, 159–174 (2015)

    Article  ADS  Google Scholar 

  • H.-J. Hoffmann, K. Pelka, U. von Zahn, D. Krankowsky, D. Linkert, The Pioneer Venus Bus neutral gas mass spectrometer. IEEE Trans. Geosci. Remote Sens. 18, 122–126 (1980). doi:10.1109/TGRS.1980.350294

    Article  ADS  Google Scholar 

  • Y. Hong, B. Fegley, Formation of carbonyl sulfide (OCS) from carbon monoxide and sulfur vapor and applications to Venus. Icarus 130, 495–504 (1997). doi:10.1006/icar.1997.5824

    Article  ADS  Google Scholar 

  • O.I. Iakovlev, S.S. Matiugov, V.N. Gubenko, Venera-15 and -16 middle atmosphere profiles from radio occultations—polar and near-polar atmosphere of Venus. Icarus 94, 493–510 (1991). doi:10.1016/0019-1035(91)90243-M

    Article  ADS  Google Scholar 

  • N.I. Ignatiev, V.I. Moroz, B.E. Moshkin, A.P. Ekonomov, V.I. Gnedykh, A.V. Grigoriev, I.V. Khatuntsev, Water vapour in the lower atmosphere of Venus: a new analysis of optical spectra measured by entry probes. Planet. Space Sci. 45, 427–438 (1997). doi:10.1016/S0032-0633(96)00143-2

    Article  ADS  Google Scholar 

  • P.G.J. Irwin, R. de Kok, A. Negrão, C.C.C. Tsang, C.F. Wilson, P. Drossart, G. Piccioni, D. Grassi, F.W. Taylor, Spatial variability of carbon monoxide in Venus’ mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements. J. Geophys. Res., Planets 113, E00B01 (2008). doi:10.1029/2008JE003093

    Article  Google Scholar 

  • V.G. Istomin, K.V. Grechnev, V.A. Kochnev, L.N. Ozerov, Composition of Venus lower atmosphere from mass-spectrometer data. Cosm. Res. 17, 581–584 (1980)

    ADS  Google Scholar 

  • N. Iwagami, S. Ohtsuki, K. Tokuda, N. Ohira, Y. Kasaba, T. Imamura, H. Sagawa, G.L. Hashimoto, S. Takeuchi, M. Ueno, S. Okumura, Hemispheric distributions of HCl above and below the Venus’ clouds by ground-based \(1.7~\upmu\mbox{m}\) spectroscopy. Planet. Space Sci. 56, 1424–1434 (2008). doi:10.1016/j.pss.2008.05.009

    Article  ADS  Google Scholar 

  • N. Iwagami, T. Yamaji, S. Ohtsuki, G.L. Hashimoto, Hemispherical distribution of CO above the Venus’ clouds by ground-based \(2.3~\upmu\mbox{m}\) spectroscopy. Icarus 207, 558–563 (2010). doi:10.1016/j.icarus.2009.12.019

    Article  ADS  Google Scholar 

  • J.M. Jenkins, P.G. Steffes, D.P. Hinson, J.D. Twicken, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: Results from the October 1991 experiments. Icarus 110, 79–94 (1994). doi:10.1006/icar.1994.1108

    Article  ADS  Google Scholar 

  • K.L. Jessup, E. Marcq, F. Mills, A. Mahieux, S. Limaye, M. Allen, J.-L. Bertaux, W. Markiewicz, T. Roman, A.C. Vandaele, W. Wilquet, Y.L. Yung, Coordinated Hubble Space Telescope and Venus Express observations of Venus’ upper cloud deck. Icarus 258, 309–336 (2015)

    Article  ADS  Google Scholar 

  • R.K. Kakar, J.W. Waters, W.J. Wilson, Venus—microwave detection of carbon monoxide. Science 191, 379 (1976). doi:10.1126/science.191.4225.379

    Article  ADS  Google Scholar 

  • J.F. Kasting, J.B. Pollack, Loss of water from Venus. I—Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983). doi:10.1016/0019-1035(83)90212-9

    Article  ADS  Google Scholar 

  • W.M. Kaula, Constraints on Venus evolution from radiogenic argon. Icarus 139, 32–39 (1999). doi:10.1006/icar.1999.6082

    Article  ADS  Google Scholar 

  • R.B. Klemm, D.D. Davis, A flash photolysis-resonance fluorescence kinetics study of the reaction S(3P) + OCS. J. Phys. Chem. 78, 1137–1140 (1974)

    Article  Google Scholar 

  • A.J. Kliore, V.I. Moroz, G.M. Keating, The Venus International Reference Atmosphere. Advances in Space Research, vol. 5(11) (1985)

  • M.A. Kolodner, P.G. Steffes, The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus 132, 151–169 (1998). doi:10.1006/icar.1997.5887

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Lightnings and nitric oxide on Venus. Planet. Space Sci. 31, 1363–1369 (1983). doi:10.1016/0032-0633(83)90072-7

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Photochemistry of the Atmospheres of Mars and Venus (Springer, Berlin, 1986)

    Book  Google Scholar 

  • V.A. Krasnopolsky, Uniqueness of a solution of a steady state photochemical problem: applications to Mars. J. Geophys. Res. 100, 3263–3276 (1995). doi:10.1029/94JE03283

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, A sensitive search for nitric oxide in the lower atmospheres of Venus and Mars: detection on Venus and upper limit for Mars. Icarus 182, 80–91 (2006a). doi:10.1016/j.icarus.2005.12.003

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Chemical composition of Venus atmosphere and clouds: some unsolved problems. Planet. Space Sci. 54, 1352–1359 (2006b). doi:10.1016/j.pss.2006.04.019

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Chemical kinetic model for the lower atmosphere of Venus. Icarus 191, 25–37 (2007). doi:10.1016/j.icarus.2007.04.028

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, High-resolution spectroscopy of Venus: detection of OCS, upper limit to H2S, and latitudinal variations of CO and HF in the upper cloud layer. Icarus 197, 377–385 (2008). doi:10.1016/j.icarus.2008.05.020

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Spatially-resolved high-resolution spectroscopy of Venus 1. Variations of CO2, CO, HF, and HCl at the cloud tops. Icarus 208, 539–547 (2010a). doi:10.1016/j.icarus.2010.02.012

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops. Icarus 209, 314–322 (2010b). doi:10.1016/j.icarus.2010.05.008

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Venus night airglow: ground-based detection of OH, observations of O2 emissions, and photochemical model. Icarus 207, 17–27 (2010c). doi:10.1016/j.icarus.2009.10.019

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Atmospheric chemistry on Venus, Earth, and Mars: main features and comparison. Planet. Space Sci. 59, 952–964 (2011). doi:10.1016/j.pss.2010.02.011

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230–246 (2012a). doi:10.1016/j.icarus.2011.11.012

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Observation of DCl and upper limit to NH3 on Venus. Icarus 219, 244–249 (2012b). doi:10.1016/j.icarus.2012.02.036

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Nighttime photochemical model and night airglow on Venus. Planet. Space Sci. 85, 78–88 (2013a). doi:10.1016/j.pss.2013.05.022

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus. Icarus 225, 570–580 (2013b). doi:10.1016/j.icarus.2013.04.026

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Observations of CO dayglow at \(4.7~\upmu\mbox{m}\), CO mixing ratios, and temperatures at 74 and 104–111 km on Venus. Icarus 237, 340–349 (2014). doi:10.1016/j.icarus.2014.04.043

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus. Icarus 252, 327–333 (2015). doi:10.1016/j.icarus.2015.01.024

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Sulfur aerosol in the clouds of Venus. Icarus 274, 33–36 (2016). doi:10.1016/j.icarus.2016.03.010

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Chemical composition of the atmosphere of Venus. Nature 292, 610–613 (1981a). doi:10.1038/292610a0

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Photochemistry of Venus’ atmosphere at altitudes over 50 km. I—Initial calculation data. Cosm. Res. 19, 61–74 (1981b)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Photochemistry of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 431–458

    Google Scholar 

  • V.A. Krasnopolsky, J.B. Pollack, H2O–H2SO4 system in Venus’ clouds and OCS, CO, and H2SO4 profiles in Venus’ troposphere. Icarus 109, 58–78 (1994). doi:10.1006/icar.1994.1077

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, D.A. Belyaev, I.E. Gordon, G. Li, L.S. Rothman, Observations of \(\mathrm{D}/\mathrm{H}\) ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths. Icarus 224, 57–65 (2013). doi:10.1016/j.icarus.2013.02.010

    Article  ADS  Google Scholar 

  • C. Lee, S.R. Lewis, P.L. Read, Superrotation in a Venus general circulation model. J. Geophys. Res., Planets 112, 4 (2007). doi:10.1029/2006JE002874

    Google Scholar 

  • J.S. Lewis, Venus: atmospheric and lithospheric composition. Earth Planet. Sci. Lett. 10, 73–80 (1970). doi:10.1016/0012-821X(70)90066-X

    Article  ADS  Google Scholar 

  • M.-C. Liang, Y.L. Yung, Sources of the oxygen isotopic anomaly in atmospheric N2O. J. Geophys. Res., Atmos. 112, 13307 (2007). doi:10.1029/2006JD007876

    ADS  Google Scholar 

  • M.-C. Liang, Y.L. Yung, Modeling the distribution of H2O and HDO in the upper atmosphere of Venus. J. Geophys. Res., Planets 114, E00B28 (2009). doi:10.1029/2008JE003095

    Google Scholar 

  • M.-C. Liang, R.-L. Shia, A.Y.-T. Lee, M. Allen, A.J. Friedson, Y.L. Yung, Meridional transport in the stratosphere of Jupiter. Astrophys. J. Lett. 635, 177–180 (2005). doi:10.1086/499624

    Article  ADS  Google Scholar 

  • S. Limaye et al., Space Sci. Rev. (2017 submitted for publication)

  • V.M. Linkin, V.V. Kerzhanovich, A.N. Lipatov, A.A. Shurupov, A. Seiff, B. Ragent, R.E. Young, A.P. Ingersoll, D. Crisp, L.S. Elson, R.A. Preston, J.E. Blamont, Thermal structure of the Venus atmosphere in the middle cloud layer. Science 231, 1420–1422 (1986). doi:10.1126/science.231.4744.1420

    Article  ADS  Google Scholar 

  • C.-W. Lu, Y.-J. Wu, Y.-P. Lee, R.S. Zhu, M.C. Lin, Experimental and theoretical investigation of rate coefficients of the reaction S(3P) + OCS in the temperature range of 298–985 K. J. Chem. Phys. 125(16), 164329 (2006). doi:10.1063/1.2357739

    Article  ADS  Google Scholar 

  • A. Mahieux, A.C. Vandaele, E. Neefs, S. Robert, V. Wilquet, R. Drummond, A. Federova, J.L. Bertaux, Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: retrieval technique. J. Geophys. Res., Planets 115, 12014 (2010). doi:10.1029/2010JE003589

    Article  ADS  Google Scholar 

  • A. Mahieux, A.C. Vandaele, S. Robert, V. Wilquet, R. Drummond, F. Montmessin, J.L. Bertaux, Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: carbon dioxide measurements at the Venus terminator. J. Geophys. Res., Planets 117, 7001 (2012). doi:10.1029/2012JE004058

    Article  ADS  Google Scholar 

  • A. Mahieux, V. Wilquet, A.C. Vandaele, S. Robert, R. Drummond, S. Chamberlain, A. Grau Ribes, J.L. Bertaux, Hydrogen halides measurements in the Venus mesosphere retrieved from SOIR on board Venus Express. Planet. Space Sci. 113, 264–274 (2015a). doi:10.1016/j.pss.2014.12.014

    Article  ADS  Google Scholar 

  • A. Mahieux, A.C. Vandaele, S.W. Bougher, R. Drummond, S. Robert, V. Wilquet, S. Chamberlain, A. Piccialli, F. Montmessin, S. Tellmann, M. Pätzold, B. Häusler, J.L. Bertaux, Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express. Planet. Space Sci. 113, 309–320 (2015b). doi:10.1016/j.pss.2015.02.002

    Article  ADS  Google Scholar 

  • A. Mahieux, A.C. Vandaele, S. Robert, V. Wilquet, R. Drummond, S. Chamberlain, D. Belyaev, J.L. Bertaux, Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express. Planet. Space Sci. 113, 193–204 (2015c). doi:10.1016/j.pss.2014.12.011

    Article  ADS  Google Scholar 

  • B.S. Maiorov, N.I. Ignat’ev, V.I. Moroz, L.V. Zasova, B.E. Moshkin, I.V. Khatuntsev, A.P. Ekonomov, A new analysis of the spectra obtained by the Venera missions in the Venusian atmosphere. I. The analysis of the data received from the Venera-11 probe at altitudes below 37 km in the \(0.44\mbox{--}0.66~\upmu\mbox{m}\) wavelength range. Sol. Syst. Res. 39, 267–282 (2005). doi:10.1007/s11208-005-0042-1

    Article  ADS  Google Scholar 

  • E. Marcq, Prelude to the Venus Express mission: a study of the atmosphere using infrared spectral imaging. Theses, Université Paris-Diderot - Paris VII, 2006. https://tel.archives-ouvertes.fr/tel-00126105

  • E. Marcq, S. Lebonnois, Simulations of the latitudinal variability of CO-like and OCS-like passive tracers below the clouds of Venus using the Laboratoire de Météorologie Dynamique GCM. J. Geophys. Res., Planets 118, 1983–1990 (2013). doi:10.1002/jgre.20146

    Article  ADS  Google Scholar 

  • E. Marcq, B. Bézard, T. Encrenaz, M. Birlan, Latitudinal variations of CO and OCS in the lower atmosphere of Venus from near-infrared nightside spectro-imaging. Icarus 179, 375–386 (2005). doi:10.1016/j.icarus.2005.06.018

    Article  ADS  Google Scholar 

  • E. Marcq, T. Encrenaz, B. Bézard, M. Birlan, Remote sensing of Venus’ lower atmosphere from ground-based IR spectroscopy: latitudinal and vertical distribution of minor species. Planet. Space Sci. 54, 1360–1370 (2006). doi:10.1016/j.pss.2006.04.024

    Article  ADS  Google Scholar 

  • E. Marcq, B. Bézard, P. Drossart, G. Piccioni, J.M. Reess, F. Henry, A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: spectroscopic studies using VIRTIS-H. J. Geophys. Res., Planets 113, E00B07 (2008). doi:10.1029/2008JE003074

    Article  ADS  Google Scholar 

  • E. Marcq, D. Belyaev, F. Montmessin, A. Fedorova, J.-L. Bertaux, A.C. Vandaele, E. Neefs, An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 58–69 (2011). doi:10.1016/j.icarus.2010.08.021

    Article  ADS  Google Scholar 

  • E. Marcq, J.-L. Bertaux, F. Montmessin, D. Belyaev, Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6(1), 25–28 (2013)

    Article  ADS  Google Scholar 

  • E. Marcq, E. Lellouch, T. Encrenaz, T. Widemann, M. Birlan, J.-L. Bertaux, Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF \(4.53~\upmu\mbox{m}\) observations. Planet. Space Sci. 113, 256–263 (2015). doi:10.1016/j.pss.2014.12.013

    Article  ADS  Google Scholar 

  • H. Matsui, N. Iwagami, M. Hosouchi, S. Ohtsuki, G.L. Hashimoto, Latitudinal distribution of HDO abundance above Venus’ clouds by ground-based \(2.3~\upmu\mbox{m}\) spectroscopy. Icarus 217, 610–614 (2012). doi:10.1016/j.icarus.2011.07.026

    Article  ADS  Google Scholar 

  • M.B. McElroy, N. Dak Sze, Y.L. Yung, Photochemistry of the Venus atmosphere. J. Atmos. Sci. 30, 1437–1447 (1973). doi:10.1175/1520-0469(1973)030<1437:POTVA>2.0.CO;2

    Article  ADS  Google Scholar 

  • F.P. Mills, A spectroscopic search for molecular oxygen in the Venus middle atmosphere. J. Geophys. Res. 104, 30757–30764 (1999). doi:10.1029/1999JE001085

    Article  ADS  Google Scholar 

  • F.P. Mills, I. Observations and Photochemical Modeling of the Venus Middle Atmosphere. II. Thermal Infrared Spectroscopy of Europa and Callisto, PhD thesis, California Institute of Technology, 1998

  • F.P. Mills, M. Allen, A review of selected issues concerning the chemistry in Venus’ middle atmosphere. Planet. Space Sci. 55, 1729–1740 (2007). doi:10.1016/j.pss.2007.01.012

    Article  ADS  Google Scholar 

  • F.P. Mills, M. Shunmuga Sundaram, T.G. Slanger, M. Allen, Y.L. Yung, Oxygen chemistry in the Venus middle atmosphere, in Advances in Geosciences, Volume 3: Planetary Science (PS) (World Scientific, Singapore, 2006), p. 109

    Chapter  Google Scholar 

  • F.P. Mills, L.W. Esposito, Y.L. Yung, Atmospheric Composition, Chemistry, and Clouds. Geophysical Monograph Series, vol. 176 (American Geophysical Union, Washington DC, 2007), pp. 73–100. doi:10.1029/176GM06

    Google Scholar 

  • F. Montmessin, J.-L. Bertaux, F. Lefèvre, E. Marcq, D. Belyaev, J.-C. Gérard, O. Korablev, A. Fedorova, V. Sarago, A.C. Vandaele, A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216, 82–85 (2011). doi:10.1016/j.icarus.2011.08.010

    Article  ADS  Google Scholar 

  • C.G. Morgan, M. Allen, M.C. Liang, R.L. Shia, G.A. Blake, Y.L. Yung, Isotopic fractionation of nitrous oxide in the stratosphere: comparison between model and observations. J. Geophys. Res., Atmos. 109, 4305 (2004). doi:10.1029/2003JD003402

    Article  ADS  Google Scholar 

  • V.I. Moroz, L.V. Zasova, VIRA-2: a review of inputs for updating the Venus International Reference Atmosphere. Adv. Space Res. 19, 1191–1201 (1997). doi:10.1016/S0273-1177(97)00270-6

    Article  ADS  Google Scholar 

  • V.I. Moroz, V.M. Linkin, I.A. Matsygorin, D. Spaenkuch, W. Doehler, Venus spacecraft infrared radiance spectra and some aspects of their interpretation. Appl. Opt. 25, 1710–1719 (1986). doi:10.1364/AO.25.001710

    Article  ADS  Google Scholar 

  • V.I. Moroz, D. Spankuch, D.V. Titov, K. Schafer, A.V. Dyachkov, W. Dohler, L.V. Zasova, D. Oertel, V.M. Linkin, J. Nopirakowski, Water vapor and sulfur dioxide abundances at the Venus cloud tops from the Venera-15 infrared spectrometry data. Adv. Space Res. 10, 77–81 (1990). doi:10.1016/0273-1177(90)90168-Y

    Article  ADS  Google Scholar 

  • J.I. Moses, M.Y. Zolotov, B. Fegley, Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus 156, 107–135 (2002). doi:10.1006/icar.2001.6759

    Article  ADS  Google Scholar 

  • C.Y. Na, L.W. Esposito, UV observation of Venus with HST, in AAS/Division for Planetary Sciences Meeting Abstracts #27. Bulletin of the American Astronomical Society, vol. 27, 1995, p. 1071

    Google Scholar 

  • C.Y. Na, L.W. Esposito, T.E. Skinner, International Ultraviolet Explorer observations of Venus SO2 and SO. J. Geophys. Res. 95, 7485–7491 (1990). doi:10.1029/JD095iD06p07485

    Article  ADS  Google Scholar 

  • H. Nair, M. Allen, A.D. Anbar, Y.L. Yung, R.T. Clancy, A photochemical model of the martian atmosphere. Icarus 111, 124–150 (1994). doi:10.1006/icar.1994.1137

    Article  ADS  Google Scholar 

  • D. Nevejans, E. Neefs, E. van Ransbeeck, S. Berkenbosch, R. Clairquin, L. de Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois, E. Villard, Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from \(2.2 \mbox{ to } 4.3~\upmu\mbox{m}\). Appl. Opt. 45, 5191–5206 (2006). doi:10.1364/AO.45.005191

    Article  ADS  Google Scholar 

  • J.M. Nicovich, K.D. Kreutter, P.H. Wine, Kinetics and thermochemistry of ClCO formation from the Cl + CO association reaction. J. Chem. Phys. 92, 3539–3544 (1990). doi:10.1063/1.457862

    Article  ADS  Google Scholar 

  • D. Oertel, D. Spankuch, H. Jahn, H. Becker-Ross, W. Stadthaus, J. Nopirakowski, W. Dohler, K. Schafer, J. Guldner, R. Dubois, V.I. Moroz, V.M. Linkin, V.V. Kerzhanovich, I.A. Matsgorin, A.N. Lipatov, A.A. Shurupov, L.V. Zasova, E.A. Ustinov, Infrared spectrometry of Venus from ‘Venera-15’ and ‘Venera-16’. Adv. Space Res. 5, 25–36 (1985). doi:10.1016/0273-1177(85)90267-4

    Article  ADS  Google Scholar 

  • J. Oschlisniok, B. Häusler, M. Pätzold, G.L. Tyler, M.K. Bird, S. Tellmann, S. Remus, T. Andert, Microwave absorptivity by sulfuric acid in the Venus atmosphere: first results from the Venus Express Radio Science experiment VeRa. Icarus 221, 940–948 (2012). doi:10.1016/j.icarus.2012.09.029

    Article  ADS  Google Scholar 

  • C.D. Parkinson, F. Mills, A. Brecht, S.W. Bougher, Y.L. Yung, Photochemical distribution of Venusian sulfur and halogen species, in AAS/Division for Planetary Sciences Meeting Abstracts #42. Bulletin of the American Astronomical Society, vol. 42, 2010, p. 994

    Google Scholar 

  • C.D. Parkinson, P. Gao, R. Schulte, S.W. Bougher, Y.L. Yung, C.G. Bardeen, V. Wilquet, A.C. Vandaele, A. Mahieux, S. Tellmann, M. Pätzold, Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles. Planet. Space Sci. (2015a)

  • C.D. Parkinson, P. Gao, L.W. Esposito, Y.L. Yung, S.W. Bougher, M. Hirtzig, Photochemical control of the distribution of Venusian water. Planet. Space Sci. (2015b). doi:10.1016/j.pss.2015.02.015

    Google Scholar 

  • R.O. Pepin, D. Porcelli, Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47(1), 191–246 (2002)

    Article  Google Scholar 

  • H. Pernice, P. Garcia, H. Willner, J.S. Francisco, F.P. Mills, M. Allen, Y.L. Yung, Laboratory evidence for a key intermediate in the Venus atmosphere: peroxychloroformyl radical. Proc. Natl. Acad. Sci. 101, 14007–14010 (2004). doi:10.1073/pnas.0405501101

    Article  ADS  Google Scholar 

  • J.B. Pollack, J.B. Dalton, D. Grinspoon, R.B. Wattson, R. Freedman, D. Crisp, D.A. Allen, B. Bézard, C. De Bergh, L.P. Giver, Q. Ma, R. Tipping, Near-infrared light from Venus’ nightside—a spectroscopic analysis. Icarus 103, 1–42 (1993). doi:10.1006/icar.1993.1055

    Article  ADS  Google Scholar 

  • R.G. Prinn, Photochemistry of HCl and other minor constituents in the atmosphere of Venus. J. Atmos. Sci. 28, 1058–1068 (1971). doi:10.1175/1520-0469(1971)028<1058:POHAOM>2.0.CO;2

    Article  ADS  Google Scholar 

  • R.G. Prinn, Venus—chemical and dynamical processes in the stratosphere and mesosphere. J. Atmos. Sci. 32, 1237–1247 (1975). doi:10.1175/1520-0469(1975)032<1237:VCADPI>2.0.CO;2

    Article  ADS  Google Scholar 

  • R.G. Prinn, Venus—chemistry of the lower atmosphere prior to the Pioneer Venus mission. Geophys. Res. Lett. 5, 973–976 (1978). doi:10.1029/GL005i011p00973

    Article  ADS  Google Scholar 

  • R.G. Prinn, On the possible roles of gaseous sulfur and sulfanes in the atmosphere of Venus. Geophys. Res. Lett. 6, 807–810 (1979). doi:10.1029/GL006i010p00807

    Article  ADS  Google Scholar 

  • R.G. Prinn, The photochemistry of the atmosphere of Venus, ed. by J.S. Levine 1985, pp. 281–336

  • M. Roos, P. Drossart, T. Encrenaz, E. Lellouch, B. Bézard, R.W. Carlson, K.H. Baines, L.W. Kamp, F.W. Taylor, A.D. Collard, The upper clouds of Venus: determination of the scale height from NIMS-Galileo infrared data. Planet. Space Sci. 41, 505–514 (1993). doi:10.1016/0032-0633(93)90033-X

    ADS  Google Scholar 

  • L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). doi:10.1016/j.jqsrt.2013.07.002

    Article  ADS  Google Scholar 

  • C.T. Russell, T.L. Zhang, H.Y. Wei, Whistler mode waves from lightning on Venus: magnetic control of ionospheric access. J. Geophys. Res. Space Phys. 113, E00B05 (2008). doi:10.1029/2008JE003137

    Article  ADS  Google Scholar 

  • A. Sánchez-Lavega, S. Lebonnois, T. Imamura, P. Read, D. Luz, Space Sci. Rev. 212, 1541–1616 (2017)

    Article  ADS  Google Scholar 

  • S.P. Sander, D.M. Golden, M.J. Kurylo, R.E. Huie, V.L. Orkin, G.K. Moortgat, A.R. Ravishankara, C.E. Kolb, M.J. Molina, B.J. Finlayson-Pitts, Chemical kinetics and photochemical data for use in atmospheric studies—evaluation number 14. JPL Publication 02-25 (2003)

  • B.J. Sandor, R.T. Clancy, Water vapor variations in the Venus mesosphere from microwave spectra. Icarus 177, 129–143 (2005). doi:10.1016/j.icarus.2005.03.020

    Article  ADS  Google Scholar 

  • B.J. Sandor, R.T. Clancy, Observations of HCl altitude dependence and temporal variation in the 70–100 km mesosphere of Venus. Icarus 220, 618–626 (2012). doi:10.1016/j.icarus.2012.05.016

    Article  ADS  Google Scholar 

  • B.J. Sandor, R. Todd Clancy, G. Moriarty-Schieven, F.P. Mills, Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra. Icarus 208, 49–60 (2010). doi:10.1016/j.icarus.2010.02.013

    Article  ADS  Google Scholar 

  • B.J. Sandor, R.T. Clancy, G. Moriarty-Schieven, Upper limits for H2SO4 in the mesosphere of Venus. Icarus 217, 839–844 (2012). doi:10.1016/j.icarus.2011.03.032

    Article  ADS  Google Scholar 

  • A. Seiff, Thermal structure of the atmosphere of Venus, in Venus, ed. by S.W. Bougher, D.M. Hunten, R.S. Phillips (University of Arizona Press, Tucson, 1983), pp. 215–279

    Google Scholar 

  • A. Seiff, J.T. Schofield, A.J. Kliore, F.W. Taylor, S.S. Limaye, Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985). doi:10.1016/0273-1177(85)90197-8

    Article  ADS  Google Scholar 

  • H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, H. Matsui, Kinetic studies on the pyrolysis H2S. J. Phys. Chem. 100, 2136–2140 (1996)

    Article  Google Scholar 

  • M. Shunmuga Sundaram, F.P. Mills, M. Allen, Y.L. Yung, An initial model assessment of NO x photochemistry on Venus with heterogenous oxidation of CO, in Proceedings of the 10th Australian Space Science Conference, 2011, pp. 119–132

    Google Scholar 

  • M. Snels, S. Stefani, D. Grassi, G. Piccioni, A. Adriani, Carbon dioxide opacity of the Venus’ atmosphere. Planet. Space Sci. 103, 347–354 (2014). doi:10.1016/j.pss.2014.08.002

    Article  ADS  Google Scholar 

  • A.I. Stewart, D.E. Anderson, L.W. Esposito, C.A. Barth, Ultraviolet spectroscopy of Venus—initial results from the Pioneer Venus orbiter. Science 203, 777–779 (1979). doi:10.1126/science.203.4382.777

    Article  ADS  Google Scholar 

  • F.W. Taylor, Carbon monoxide in the deep atmospheres of Venus. Adv. Space Res. 16, 81 (1995). doi:10.1016/0273-1177(95)00253-B

    Article  ADS  Google Scholar 

  • F.W. Taylor, D. Crisp, B. Bézard, Near-infrared sounding of the lower atmosphere of Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 325

    Google Scholar 

  • D.V. Titov et al., Space Sci. Rev. (2017 submitted for publication)

  • M.V. Tonkov, N.N. Filippov, V.V. Bertsev, J.P. Bouanich, N. van-Thanh, C. Brodbeck, J.M. Hartmann, C. Boulet, F. Thibault, R. Le Doucen, Measurements and empirical modeling of pure CO2 absorption in the \(2.3\mbox{-}\upmu\mbox{m}\) region at room temperature: far wings, allowed and collision-induced bands. Appl. Opt. 35, 4863–4870 (1996). doi:10.1364/AO.35.004863

    Article  ADS  Google Scholar 

  • W.A. Traub, N.P. Carleton, Observations of O2, H2O and HD in planetary atmospheres, in Exploration of the Planetary System, ed. by A. Woszczyk, C. Iwaniszewska IAU Symposium, vol. 65, 1974, pp. 223–228

    Chapter  Google Scholar 

  • J.T. Trauger, J.I. Lunine, Spectroscopy of molecular oxygen in the atmospheres of Venus and Mars. Icarus 55, 272–281 (1983). doi:10.1016/0019-1035(83)90082-9

    Article  ADS  Google Scholar 

  • A.H. Treiman, M.A. Bullock, Mineral reaction buffering of Venus’ atmosphere: a thermochemical constraint and implications for Venus-like planets. Icarus 217, 534–541 (2012). doi:10.1016/j.icarus.2011.08.019

    Article  ADS  Google Scholar 

  • C.C.C. Tsang, P.G.J. Irwin, C.F. Wilson, F.W. Taylor, C. Lee, R. de Kok, P. Drossart, G. Piccioni, B. Bézard, S. Calcutt, Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations. J. Geophys. Res., Planets 113, E00B08 (2008). doi:10.1029/2008JE003089

    Article  Google Scholar 

  • C.C.C. Tsang, F.W. Taylor, C.F. Wilson, S.J. Liddell, P.G.J. Irwin, G. Piccioni, P. Drossart, S.B. Calcutt, Variability of CO concentrations in the Venus troposphere from Venus Express/VIRTIS using a Band Ratio Technique. Icarus 201, 432–443 (2009). doi:10.1016/j.icarus.2009.01.001

    Article  ADS  Google Scholar 

  • C.C.C. Tsang, C.F. Wilson, J.K. Barstow, P.G.J. Irwin, F.W. Taylor, K. McGouldrick, G. Piccioni, P. Drossart, H. Svedhem, Correlations between cloud thickness and sub-cloud water abundance on Venus. Geophys. Res. Lett. 37, 2202 (2010). doi:10.1029/2009GL041770

    Article  ADS  Google Scholar 

  • A.C. Vandaele, C. Hermans, S. Fally, Fourier transform measurements of SO2 absorption cross sections: II. Temperature dependence in the \(29000\mbox{--}44000~\mbox{cm}^{-1}\) (227–345 nm) region. J. Quant. Spectrosc. Radiat. Transf. 110, 2115–2126 (2009). doi:10.1016/j.jqsrt.2009.05.006

    Article  ADS  Google Scholar 

  • A.C. Vandaele, A. Mahieux, D. Belyaev, J.-L. Bertaux, A. Fedorova, A. Piccialli, R. Drummond, S. Robert, F. Montmessin, O. Korablev, V. Wilquet, I. Thomas, Composition of the Venus mesosphere: a synthesis of SOIR/VEX observations, in 40th COSPAR Scientific Assembly. COSPAR Meeting, vol. 40, 2014, p. 3469

    Google Scholar 

  • A.C. Vandaele, A. Mahieux, S. Chamberlain, S. Robert, I. Thomas, L. Trompet, V. Wilquet, J.-L. Bertaux, Carbon monoxide observed on Venus with SOIR/VEx. Planet. Space Sci. (2015a)

  • A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, J.L. Bertaux, Carbon monoxide short term variability observed on Venus with SOIR/VEX. Planet. Space Sci. 113, 237–255 (2015b). doi:10.1016/j.pss.2014.12.012

    Article  ADS  Google Scholar 

  • A.C. Vandaele, O. Korablev, D. Belyaev, S. Chamberlain, T. Encrenaz, L.W. Esposito, K.L. Jessup, F. Lefèvre, S. Limaye, A. Mahieux, E. Marcq, F. Mills, C.D. Parkinson, S. Robert, B. Sandor, A. Stolzenbach, C.F. Wilson, V. Wilquet, Sulphur dioxide variability in the Venus atmosphere. Planet. Space Sci. (2017)

  • U. von Zahn, V.I. Moroz, Composition of the Venus atmosphere below 100 km altitude. Adv. Space Res. 5, 173–195 (1985). doi:10.1016/0273-1177(85)90201-7

    Article  ADS  Google Scholar 

  • U. von Zahn, S. Kumar, H. Niemann, R. Prinn, Composition of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), p. 299

    Google Scholar 

  • B.A. Voronin, J. Tennyson, R.N. Tolchenov, A.A. Lugovskoy, S.N. Yurchenko, A high accuracy computed line list for the HDO molecule. Mon. Not. R. Astron. Soc. 402, 492–496 (2010). doi:10.1111/j.1365-2966.2009.15904.x

    Article  ADS  Google Scholar 

  • J.R. Winick, A.I.F. Stewart, Photochemistry of SO2 in Venus’ upper cloud layers. J. Geophys. Res. 85, 7849–7860 (1980). doi:10.1029/JA085iA13p07849

    Article  ADS  Google Scholar 

  • L.D.G. Young, High resolution spectra of Venus—a review. Icarus 17, 632–658 (1972). doi:10.1016/0019-1035(72)90029-2

    Article  ADS  Google Scholar 

  • Y.L. Yung, W.B. DeMore, Photochemistry of the stratosphere of Venus—implications for atmospheric evolution. Icarus 51, 199–247 (1982). doi:10.1016/0019-1035(82)90080-X

    Article  ADS  Google Scholar 

  • Y.L. Yung, W.B. Demore, Photochemistry of Planetary Atmospheres (Oxford University Press, New York, 1999)

    Google Scholar 

  • Y.L. Yung, M.C. Liang, X. Jiang, R.L. Shia, C. Lee, B. Bézard, E. Marcq, Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus. J. Geophys. Res., Planets 114, E00B34 (2009). doi:10.1029/2008JE003094

    Article  ADS  Google Scholar 

  • L.V. Zasova, The structure of the Venusian atmosphere at high latitudes. Adv. Space Res. 16, 89 (1995). doi:10.1016/0273-1177(95)00254-C

    Article  ADS  Google Scholar 

  • L.V. Zasova, V.I. Moroz, L.W. Esposito, C.Y. Na, SO2 in the middle atmosphere of Venus: IR measurements from Venera-15 and comparison to UV data. Icarus 105, 92–109 (1993). doi:10.1006/icar.1993.1113

    Article  ADS  Google Scholar 

  • L.V. Zasova, V.I. Moroz, V.M. Linkin, Venera-15, 16 and VEGA mission results as sources for improvements of the Venus reference atmosphere. Adv. Space Res. 17, 171–180 (1996). doi:10.1016/0273-1177(95)00747-3

    Article  ADS  Google Scholar 

  • L.V. Zasova, V.I. Moroz, V.M. Linkin, I.V. Khatuntsev, B.S. Maiorov, Structure of the Venusian atmosphere from surface up to 100 km. Cosm. Res. 44, 364–383 (2006). doi:10.1134/S0010952506040095

    Article  ADS  Google Scholar 

  • X. Zhang, On the decadal variation of sulfur dioxide at the cloud top of Venus, in 40th COSPAR Scientific Assembly. COSPAR Meeting, vol. 40, 2014, p. 3800. Held 2–10 August 2014, in Moscow, Russia, Abstract B0.7-9-14

    Google Scholar 

  • X. Zhang, M.-C. Liang, F. Montmessin, J.-L. Bertaux, C. Parkinson, Y.L. Yung, Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus. Nat. Geosci. 3, 834–837 (2010). doi:10.1038/ngeo989

    Article  ADS  Google Scholar 

  • X. Zhang, M.C. Liang, F.P. Mills, D.A. Belyaev, Y.L. Yung, Sulfur chemistry in the middle atmosphere of Venus. Icarus 217, 714–739 (2012). doi:10.1016/j.icarus.2011.06.016

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research program was supported in Belgium by the Belgian Federal Science Policy Office and the European Space Agency (ESA, PRODEX program, contracts C 90268, 90113, and 17645). We also recognize the support from the FP7 EuroVenus project (G.A. 606798), from the “Interuniversity Attraction Poles” program financed by the Belgian government (Planet TOPERS), and from the BRAIN research grant BR/143/A2/SCOOP of the Belgian Federal Science Policy Office.

The authors also wish to thank the International Space Science Institute (ISSI) for their fruitful support, in particular to the members of the ISSI International Team “Sulfur Dioxide variability in the Venus atmosphere” which met during 2013–2015 in the facilities of ISSI in Bern, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Marcq.

Additional information

Venus III

Edited by Bruno Bézard, Christopher T. Russell, Takehiko Satoh, Suzanne E. Smrekar and Colin F. Wilson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcq, E., Mills, F.P., Parkinson, C.D. et al. Composition and Chemistry of the Neutral Atmosphere of Venus. Space Sci Rev 214, 10 (2018). https://doi.org/10.1007/s11214-017-0438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-017-0438-5

Keywords

Navigation